Kinetic Modelling of Energy Metabolism in Mitochondria

	Katsuyuki Yugi ¹²	Yuko Kanai 13	Masaru Tomita 14	
	chaos@sfc.keio.ac.jp	s97911yk@sfc.keio.ac.jp	mt@sfc.keio.ac.jp	
1	Laboratory for Bioinformatics			
2	² Graduate School of Media and Governance			
3	Department of Policy Management			

⁴ Department of Environmental Information Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-8520, Japan

1 Introduction

We are constructing kinetic models of various mitochondrial metabolisms including gene expression, electron transport (respiratory chain), TCA cycle, fatty acid metabolism (β oxidation), innermembrane metabolite carriers, and protein carriers. In this work, we report the model of pathways for energy metabolism which is recently completed using the E-CELL system [2].

2 Result

A mitochondrion includes three major energy metabolic pathways: electron transport, TCA cycle, and β oxidation. The basic steps of the energy metabolism are listed below.

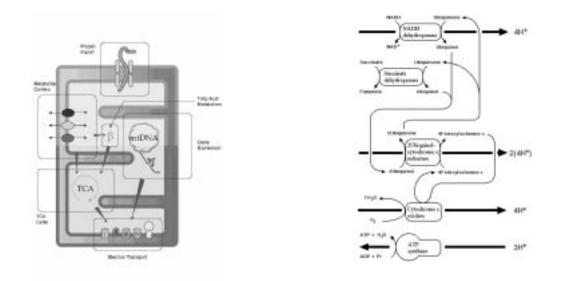


Figure 1: (a) Overview of the mitochondrial model.

- 1. Inner membrane metabolite carriers transport pyruvate, fatty acid, ADP, and P_i .
- 2. Acetyl-CoA is produced from pyruvate by pyruvate dehydrogenase.
- 3. From fatty acid, a cetyl-CoA is made by β oxidation.
- 4. TCA cycle oxidizes acetyl-CoA to produce NADH, the substrate of electron transport.
- 5. The four enzymes of electron transport oxidize NADH.

⁽b) Pathway map of electron transport.

	Enzyme	Reaction type
	NADH dehydrogenase	Ping Pong Bi Bi
	Succinate dehydrogenase	Ping Pong Bi Bi
Electron transport	Ubiquinol:Cytochrome c oxidoreductase	Hexa Uni Ping Pong
	Cytochrome c oxidase	Michaelis-Menten (Uni Uni)
	ATP synthase	see $[1]$
	Glutamate dehydrogenase	Rapid Equilibrium Ordered Bi Bi
	2-ketoglutare dehydrogenase complex	Multisite Ping Pong with $[P] = 0$
	Succinate dehydrogenase	Uni Uni
	Fumarase	Uni Uni
	Malate dehydrogenase	Iso Ordered Bi Bi
	Malic enzyme	Allosteric Michaelis-Menten
	Alanine \longrightarrow Pyruvate	Unimolecular Mass Action
	Pyruvate dehydrogenase complex	Multisite Ping Pong with $[P] = 0$
TCA cycle	Oxaloacetate $1 \longrightarrow Aspartate$	Unimolecular Mass Action
	Aspartate \longrightarrow Oxaloacetate 1	Unimolecular Mass Action
	Citrate synthase	Rapid Equilibrium Ordered Bi Bi
	Citrate $1 \longrightarrow$ Isocitrate	Unimolecular Mass Action
	Isocitrate dehydrogenase	Rapid Equilibrium Ordered Bi Bi
	Glutamate \longrightarrow Succinate	Unimolecular Mass Action
	Aspartate transaminase	Ping Pong Bi Bi
	Alanine transaminase	Ping Pong Bi Bi
	Oxaloacetate 1 \longrightarrow Oxaloacetate 2	Unimolecular Mass Action
	Aspartate \longrightarrow Oxaloaetate 2	Unimolecular Mass Action
	Succinate \longrightarrow Glutamate	Unimolecular Mass Action
	Oxaloacetate $2 \longrightarrow Aspartate$	Unimolecular Mass Action

Table 1: Examples of the reactions and their types in the model

6. At the end of electron transport, ATP synthase generates ATP.

There are 5 enzymatic reactions for electron transport, 11 enzymatic reactions and 9 other reactions for TCA cycle, 5 enzymatic reactions for β oxidation, and 8 enzymatic reactions for metabolite carrier system. All the enzymatic reactions are modeled based on kinetic parameters found in the literature.

We will continue to enhance this mitochondrial model, adding other major metabolism including gene expression, fatty acid metabolism, and DNA replication. Our eventual goal is to apply this model to pathological analyses of mitochondorial diseases such as Leigh syndrome and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).

Acknowledgement

This work was supported in part by Japan Science and Technology Corporation, Eizai Research Institute and a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan.

References

- Pérez, J.A. and Ferguson, S.J., Kinetics of oxidative phosphorylation in *Paracoccus denitrificans*.
 Mechanism of ATP synthesis at the active site(s) of F₀F₁-ATPase, *Biochemistry*, 29:10503–10518, 1990.
- [2] Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J. C., and Hutchison, C., E-CELL: software environment for whole cell simulation, *Bioinformatics*, 15(1):72–84, 1999.