Towards Kinetic Modeling of DNA Replication Using the E-CELL System

Fumihiko Miyoshi 12Kenta Hashimoto 12fumi@sfc.keio.ac.jpkem@sfc.keio.ac.jpReina Matsuo 13Youhei Yamada 13t99528rm@sfc.keio.ac.jpt97952yy@sfc.keio.ac.jp

Yuki Fujita¹³ t98826yf@sfc.keio.ac.jp Masaru Tomita¹³ mt@sfc.keio.ac.jp

¹ Laboratory for Bioinformatics

² Graduate School of Media and Governance
³ Department of Environmental Information

Keio University, 5322 Endo, Fujisawa 252-8520, Japan

1 Introduction

We have been developing a computer model of $E. \ coli$'s DNA replication system using the E-CELL System, a generic software for simulation of cellular processes. In this paper, we present kinetic models for initiation and elongation of the DNA replication.

2 Initiation

The figure above illustrates the initiation process of *E. coli* DNA replication. *E. coli* initiates DNA replication when ATP-binding DnaA protein binds to each of the four DnaA-boxes in oriC. States of the DnaA protein can be classified as follows: (i) Non-active DnaA (DnaA_i), (ii) ATP-bound DnaA (DnaA-ATP) which freely exists in cytoplasm (DnaA_f), (iii) DnaA-ATP which is bound to a DnaA-box in oriC(DnaA_o), (iv) DnaA-ATP which is bound to a non-oriC consensus sequence(DnaA_g). The kinetics used in the simulation is based on the following four formulas [1].

$$\begin{aligned} \frac{d[DnaA_o]}{dt} &= 4(k_0[DnaA_f] - k_d) \\ \frac{d[DnaA_g]}{dt} &= k_{g1}[DnaA_f]([GS] - [DnaA_g]) - (k_{g2} + \mu)[DnaA_g] \\ \frac{d[DnaA_f]}{dt} &= \frac{k_{r1}}{1 + K_{r2}([DnaA_f] + \gamma[DnaA_i])} - k_{g1}[DnaA_f]([GS] - [DnaA_g]) \\ &+ k_{g2}[DnaA_g] - (k_{r3} + \mu)[DnaA_f] \\ \frac{d[DnaA_i]}{dt} &= k_{r3}[DnaA_f] - \mu[DnaA_i] \end{aligned}$$

where $k_0 = 0.13 (\times 10^{-9} \text{OD}_{450}/\text{molecule}\cdot\text{min}), k_d \approx 0.35 (\text{min}^{-1}), k_{g1} \approx 0.0186 (\times 10^{-9} \text{OD}_{450}/\text{molecule}\cdot\text{min}), k_{r1} \approx 46.7 (\times 10^9 \text{ molecules} / \text{OD}_{450}\cdot\text{min}), K_{r2} = 2 (\times 10^{-9} \text{OD}_{450}/\text{molecules}), k_{r3} \approx 0.58 (\text{min}^{-1}), \gamma = 0.01, [GS] = 123.8 (\times 10^9 \text{molecules}/\text{OD}_{450}), \mu = 0.0156 \text{ and } k_d = 0.35(\text{min}^{-1}).$

3 Elongation

The kinetics of the DNA chain elongation reaction is expressed with the E-CELL System using the following formula [2]. This formula takes into consideration the length of the replicated DNA chain, the activity of DNA polymeraseIII, and the time required for a NTP to bind to the DNA chain.

Kinetics equations:

$$v = \frac{K_T[E_0][S_0]}{K_M + [S_0](1 + K_H[I])}$$

where K_T =turnover number, K_M =Michaelis constant, K_H = inhibition parameter, I=free template concentration, E_0 = DNA polymeraseIII concentration, and S_0 = NTP concentration.

4 Future work

Work is being done for the modeling of cell division [3]. Simulation of a full cell cycle would ultimately be made possible by connecting the DNA replication model with the new cell division model.

Acknowledgements

This work was supported in part by Japan Science and Technology Corporation, Eizai Research Institute and a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan.

References

- Mahaffy, J.M. and Zyskind, J.W., A model for the initiation of replication in Escherichia coli., J. Theor. Biol., 140:453–477, 1989.
- [2] Biebricher, C.K., Eigen, M., and Gardiner W.C. Jr., Kinetics of RNA replication, *Biochemistry*, 22:2544–2559, 1983.
- [3] Keasling, J.D., Kuo, H., Vahanian, G., A Monte Carlo simulation of the *Escherichia coli* cell cycle, J. Theor. Biol., 176:411–430, 1995.