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Abstract

Constructing restriction maps is one of the important steps towards the determination of DNA
sequences. Recently, the single-molecule approaches to constructing restriction maps, such as Opti-
cal Mapping by D. Schwartz et al., have developed. In practice, with the single-molecule approach
like Optical Mapping, the identification of the restriction sites is complicated by several error factors
due to resolving power of biological experiments. The ordered restriction map alignment problem
is a problem to estimate the actual restriction sites from many imprecise copies of map from single
molecule.

In this paper, we formulate the problem on the basis of the statistical maximum likelihood
estimate, and propose a new efficient local search algorithm for this problem, by applying the
Expectation-Maximization (EM) algorithm along with the concept of two-clustering. Our algorithm
works well for a lot of sets of simulated data, some of which we believe more difficult than the actual
cases.

1 Introduction

Optical Mapping [15, 2, 16, 11] is a new single-molecule approach to constructing restriction maps,
recently developed by D. Schwartz et al. In the Optical Mapping, single copies of the target DNA
molecule are fluorescently stained, and stretched to attach to a glass support under a microscope.
Then restriction enzymes are activated in the medium, and cleave the molecules at their restriction
sites. The molecule fragments remain on the surface, but the elasticity of linearized DNA pulls back
the molecule ends at the new cleaved sites. Therefore we can identify the restriction sites as gaps
under the microscope in the fluorescent line of the molecule, and the length of each fragment can be
measured based on the fluorescent intensity of it.

Thus, in this case the relative order of the fragments is not lost, and, in principle, the restric-
tion map of the whole molecule is obtained. However, the obtained map is imprecise due to several
experimental errors. First, not all of restriction sites are digested in each molecule and the experi-
mentally obtained map may have some other hidden restriction sites (false negative errors). Second,
to the contrary, some of the gaps detected in the experiment may not be the actual restriction sites
(false positive errors). Third, errors in the measured length of each fragment are not avoidable (sizing
errors). The effect of these three errors seems to be removed by gathering experimental data from
many molecules, however, using many molecules causes other problems. The main difficulty is that
the orientation of each molecule (left to right or vice versa) is not known, and the correct orientation
of each molecule should be determined in order to obtain the correct map. Besides them, there may
be a spurious data among the gathered data, or some of the molecule fragments may be missed under
the experiment, etc. Thus we should solve some other mathematical problems to build a map.

The ordered restriction map alignment problem is a problem to estimate the actual restriction
map from the gathered imprecise maps of the same DNA molecule by a single-molecule approach like
Optical Mapping.

Roughly speaking, there are two types of approaches to this problem, statistical approaches [1, 4, 9]
and combinatorial approaches [12, 13, 14, 6, 7].



As for the combinatorial approaches, the major drawback lies in the weakness of their statistical
background, especially for sizing errors, with respect to the criteria to be optimized. Moreover, their
algorithms put an unrealistic assumption that the approximate values of digestion rate or the average
number of false cuts per molecule should be known.

On the other hand, as for the statistical approaches, Anantharaman et al. [1] are the first that
gave a detailed probabilistic model. They compute the Bayesian estimation by a steepest ascent
local search. They also defined several simplified models and proved NP-completeness of problems
on these simplified models. However, in their local search algorithm, they solve partial differential
equations approximately. Thus their local search is not a “steepest” ascent one in a strict sense.
Moreover their model is very complicated and is not so easy to handle. Danč́ık and Waterman [4]
formulated the problem using the Gaussian mixture model. Their idea is based on the clustering
of the observed restriction sites, and they compute the maximum likelihood estimate by employing
the Expectation-Maximization (EM) algorithm for their model. Since their algorithm also puts an
unrealistic assumption that the number of the restriction sites should be known before computing, Lee
et al. [9] extended this idea and applied the Reversible-Jump Markov Chain Monte Carlo to computing
maximum likelihood estimate in order to reinforce this weak point. However, their algorithm does not
work well when there is a lot of noises on data due to frequent false positives.

In this paper we formulate the problem in a statistical way, incorporating the merit of combinatorial
approaches. That is, we use the discretized model as in [12, 7] to simplify our model. However, instead
of taking a combinatorial approach itself, we introduce our statistical model, similar to [1], although
ours is based on the discretized formulation, and take the maximum likelihood approach.

Generally speaking, in comparison with the Newton-type methods, the EM algorithm is numeri-
cally stable with each iteration increasing likelihood, and has reliable global convergence under fairly
general conditions, although the algorithm may converge slowly (cf. [10]). Thus we consider applying
the EM-type algorithm rather than a steepest ascent method.

We classify the error factors into three types, sizing errors, false negatives or positives, and ori-
entation errors. We remove the noises of first two types of error factors with the EM algorithm, by
assuming imaginary state in which only sizing errors take place. Our discretized model enables us
to fulfill global maximization in each maximizing step of the EM algorithm in a strict sense. For
orientation errors, we utilize the concept of two-clustering.

Since our algorithm above is a local search algorithm and its accuracy greatly depends on the
initial solution, we also propose an efficient heuristic algorithm to generate an initial solution. This
heuristic algorithm is a greedy-type one, however, it can find a solution of very high quality without
knowing any advance informations for the values of the parameters, and by itself can match other
algorithms enough.

We also confirmed that our algorithm works well for a lot of sets of simulated data, some of which
we believe more difficult than the actual cases.

2 Ordered Restriction Map Alignment Problem

Here we give our formulation of the ordered restriction map alignment problem. Since the location
of cut sites in each molecule can be measured only with limited accuracy, and for computational
convenience, we take a discretized formulation of the problem. We introduce a probabilistic model on
our discretized formulation, and compute the maximum likelihood estimate on this model.

2.1 Discretized Representation of the Molecules

We assume that each observed molecule is described in a 0-1 string of length l. Let n denote the
number of the observed molecules, and let s1, · · · , sn denote the observed molecules each represented
by a 0-1 string of length l. Let si,j denote the jth entry of the ith molecule in 0-1 representation
(i = 1, · · · , n, j = 1, · · · , l), where si,j = 1 if and only if there is a cut site in position j of the ith
molecule, and otherwise si,j = 0.



In order to deal with the orientation errors, we introduce unobservable 0-1 indicator variables di

which represent the orientation of the observed molecules (i = 1, · · · , n). If the orientation of the ith
molecule is preserved, di takes 0, and if it is reversed, di takes 1.

For simplicity, we also use a matrix M(d) = {M(d)ij} where

M(d)ij = s1−di
i,j sdi

i,l−j+1 (i = 1, · · · , n, j = 1, · · · , l),

where d = (d1, · · · , dn)T . Let si denote the reverse of si. The jth entry of si is defined by s̄i,j = si,l−j+1

(j = 1, · · · , l).
We also use 0-1 representation for the unknown correct restriction map. Let S denote this unknown

actual restriction map represented by a 0-1 string of length l. If the actual restriction map S has r
restriction sites, and if the locations of r actual restriction sites are θ1, · · · , θr (θi ∈ N, 1 ≤ θ1 < · · · <
θr ≤ l), the representation of S = (θ1, · · · , θr) precisely provides one 0-1 string of length l with just
r 1’s. Thus we also use this representation for S. Although we gave a discretized representation for
S above, in the rest of this paper we actually use the continuous representation of S = (θ1, · · · , θr)
where θi ∈ R, 0 < θ1 < · · · < θr ≤ l for computational convenience, since there is no reason that we
should represent the actual map in a discretized way.

As for the error factors, we deal with the following four types of errors: false positives, false
negatives, sizing errors, and orientation errors. We assume that these four types of errors occur
independently in a probabilistic sense.

Then, roughly speaking, the problem we solve is to find the actual map S and the 0-1 assignment
of each di that maximize the probability we observe the set of sample data si of size n in a given
probabilistic model.

2.2 Probabilistic Model for Sizing Errors

Here we give our probabilistic model for sizing errors. For simplicity, in this subsection and after a
while, we consider a simplified problem of no orientation errors. We also assume for a while that r,
the number of the actual restriction sites, is known. We will see how to estimate r in Section 4.

We assume that the kth actual restriction site at θk is observed in each sample data si according
to the normal distribution with mean θk and variance σ2

k, if it appears as a cut site in si, and if there
occurs no orientation errors (i = 1, · · · , n, k = 1, · · · , r).

For convenience, let us consider such an imaginary state that only sizing errors have occurred, and
false positives or negatives have not occurred yet. Let zi denote the ith molecule in such an imaginary
state represented by a 0-1 string of length l (i = 1, · · · , n). Note that zi has just r 1’s, since there have
been no false positives or negatives yet. Let θ̃i,k denote the location of the kth restriction site in zi

(i = 1, · · · , n, k = 1, · · · , r). Then the probability that the kth actual restriction site in S at location
θk is observed at location θ̃i,k in zi is given by

h(θ̃i,k; θk, σ
2
k) =




∫ θ̃i,k+ 1
2

−∞
g(t; θk, σ2

k) dt if θ̃i,k = 1,∫ θ̃i,k+ 1
2

θ̃i,k− 1
2

g(t; θk, σ2
k) dt if 2 ≤ θ̃i,k ≤ l − 1,∫ ∞

θ̃i,k− 1
2

g(t; θk, σ2
k) dt if θ̃i,k = l,

if we take the effect of the discretization of the data into account, where g is a probability den-
sity function of normal distribution N(µ, σ2) with mean µ and variance σ2 defined as g(x;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 .

In practice, each θ̃i,k is never less than 1 or more than l, and the order of restriction sites should
be preserved with sizing errors, that is, 1 ≤ θ̃i,1 < · · · < θ̃i,r ≤ l should be satisfied for all i = 1, · · · , n.
Thus we do not allow the sizing errors to change the order of restriction sites, which was permitted



in the Gaussian mixture model by Danč́ık and Waterman [4] or Lee et al. [9]. Instead, we permit a
little abuse of our model in a probabilistic sense, and define the probability that we get zi from S in
the ith molecule with only sizing errors as follows:

psizing error(zi;S) =




r∏
k=1

h(θ̃i,k; θk, σ
2
k) if 1 ≤ θ̃i,1 < · · · < θ̃i,r ≤ l,

0 otherwise.

(1)

By this definition the total sum of psizing error(zi;S) is less than 1, hence, psizing error(zi;S) is not a
probability in a strict sense. However, as far as we use the model with normal distributions, this
contradiction cannot be avoided. In the rest part of this paper, for computational convenience, we
approximate h, the probability density function of the discretized version of normal distribution, by
g, the probability density function of the original normal distribution.

2.3 Probabilistic Model for False Positives and False Negatives

In this subsection we give a probabilistic model for false positives and negatives.
We assume that false positives only depend on physical factors during the experiment, and that false

negatives only depend on partial digestion of the restriction sites. Since we assume the probabilistic
independence among four types of errors, we can consider that false positives and negatives occur after
sizing errors have taken place.

Let pd denote the digestion rate, which is the probability of an actual restriction site to appear
as a cut site in each molecule. We assume that the digestion rate is equal for every actual restriction
site. Let pfp denote the false positive rate per bit, which is the probability of appearing false cut site
at each position. Then, in the absence of orientation errors, the probability that we get si from zi

with only false positives and negatives is given by

pfp&fn(si;zi) =
l∏

j=1

pbit error(si,j ; zi,j , pd, pfp),

where zi,j denotes the jth entry of zi, and pbit error(x; y, pd, pfp) is defined as

pbit error(x; y, pd, pfp) =




1 − pfp if (x, y) = (0, 0),
pfp if (x, y) = (1, 0),
(1 − pfp)(1 − pd) if (x, y) = (0, 1),
pfp + (1 − pfp)pd if (x, y) = (1, 1).

Note that the following representation for pbit error(x; y, pd, pfp) is equivalent to above definition:

pbit error(x; y, pd, pfp) = (1 − pfp)(1−x)p
x(1−y)
fp (1 − pd)(1−x)y(pfp + pd − pfppd)xy.

With this representation, pfp&fn(si;zi) can be represented in the form of

pfp&fn(si;zi) =
l∏

j=1

{
(1 − pfp)(1−si,j)p

si,j(1−zi,j)
fp · (1 − pd)(1−si,j)zi,j (pfp + pd − pfppd)si,jzi,j

}
. (2)

2.4 Our Definition of the Ordered Restriction Map Alignment Problem

Putting the models of the previous two subsections together, and taking the assumption of the proba-
bilistic independency between sizing errors and false positives or negatives into account, the probability
we get si from S is, in the absence of orientation errors,

Pr(si | S) =
∑

zi∈S(l,r)

{psizing error(zi;S) · pfp&fn(si;zi)} ,



where S(l, r) denotes the set of 0-1 strings of length l with just r 1’s. Thus, if the orientation of the
ith molecule is indicated by di, the probability we get the sample set s1, · · · , sn is given by

Pr(s1, · · · , sn | S) =
n∏

i=1

{
Pr(si | S)1−di Pr(si | S)di

}
. (3)

We regard (3) as a likelihood function L of Ψ = (θT ,σT , pd, pfp,d
T ), where θ = (θ1, · · · , θr)T ,σ =

(σ2
1 , · · · , σ2

r )
T ,d = (d1, · · · , dn)T . Then the problem is to find the estimates θT ,σT , pd, pfp and 0-1

assignment of each di that maximize the likelihood function L(Ψ ) for given sample set of s1, · · · , sn.

3 Local Search Based on the EM Algorithm

Here we present our local search algorithm for the problem defined in the last section. First we consider
an algorithm for the simplified problem with no orientation errors. Then we extend the algorithm to
a general case of orientation errors to occur.

3.1 Cases with Known Orientation

In this subsection we assume that there are no orientation errors to occur.
In this case our likelihood function to be maximized is in the form of

L(Ψ ) =
n∏

i=1

Pr(si | S) =
n∏

i=1


 ∑
zi∈S(l,r)

{psizing error(zi;S) · pfp&fn(si;zi)}

 , (4)

where Ψ = (θT ,σT , pd, pfp)T .
We consider applying the EM algorithm [5] to this model. The EM algorithm is a broadly appli-

cable approach to the iterative computation of maximum likelihood estimates. In order to simplify
the complicated log-likelihood function, the EM algorithm assumes the existence of some additional
missing data, which may be really missing, or actually unobservable. On each iteration of the EM
algorithm, the expectation step (E-step) estimates values of missing data by utilizing conditional ex-
pectations, and the maximization step (M-step) maximizes the log-likelihood function using these
estimated values for missing data. More detail descriptions about the EM algorithm are, for example,
in [10].

In our case, it is quite natural to regard every zi, the ith molecule in an imaginary state with only
sizing errors to have occurred, as unobservable missing data in the EM algorithm. The complete-data
likelihood function of the EM algorithm in this case is

Lc(Ψ ) =
n∏

i=1

{psizing error(zi;S) · pfp&fn(si;zi)} . (5)

Thus the log likelihood function lc(Ψ ) for the complete-data is given by

lc(Ψ ) = log Lc(Ψ ) =
n∑

i=1

log psizing error(zi;S) +
n∑

i=1

log pfp&fn(si;zi). (6)

Then Q function in the EM algorithm can be computed by taking conditional expectation given
s1, · · · , sn of the complete-data log likelihood function lc(Ψ ), using current estimates for parameters
Ψ . In the (t + 1)th iteration of the EM algorithm, using Ψ (t), estimates for Ψ in the tth iteration, as
current estimates,



Q(Ψ ;Ψ (t)) = E
	

(t)(lc(Ψ ) | s1, · · · , sn)

= −
n∑

i=1

r∑
k=1

E
	

(t)(θ̃2
i,k)

2σ2
k

+
n∑

i=1

r∑
k=1

θkE	 (t)(θ̃i,k)
σ2

k

− n
r∑

k=1

θ2
k

2σ2
k

− n

2

r∑
k=1

log(2πσ2
k)

+
n∑

i=1

l∑
j=1

(1 − si,j) log(1 − pfp) +
n∑

i=1

l∑
j=1

{
1 − E

	
(t)(zi,j)

}
si,j log pfp

+
n∑

i=1

l∑
j=1

E
	

(t)(zi,j)(1 − si,j) log(1 − pd) +
n∑

i=1

l∑
j=1

E
	

(t)(zi,j)si,j log(pfp + pd − pfppd).

In the above equation, and in the rest of this paper, for simplicity, we use notations E
	

(t)(θ̃i,k),
E
	

(t)(θ̃2
i,k), E

	
(t)(zi,j) instead of E

	
(t)(θ̃i,k | s1, · · · , sn), E

	
(t)(θ̃2

i,k | s1, · · · , sn), E
	

(t)(zi,j | s1, · · · , sn),
respectively.

Hence, if we can evaluate each conditional expectation E
	

(t)(θ̃i,k), E
	

(t)(θ̃2
i,k), E

	
(t)(zi,j), the M-

step on the (t + 1) the iteration can be fulfilled as follows.
By computing partial derivative with respect to each θk, σ

2
k, and solving simultaneous partial dif-

ferential equations, we can maximize Q with respect to each θk, σ
2
k, respectively, by following updates:

θ
(t+1)
k :=

1
n

n∑
i=1

E
	

(t)(θ̃i,k), σ2
k

(t+1) :=
1
n

n∑
i=1

E
	

(t)(θ̃2
i,k) − θ

(t+1)
k

2
, (7)

for all k = 1, · · · , r. Similarly, as for pd, pfp, by computing partial derivative with respect to pd, pfp,
and solving simultaneous partial differential equations, we can maximize Q with respect to pd, pfp,
respectively, by following updates:

p
(t+1)
fp :=

n∑
i=1

l∑
j=1

(
si,j − E

	
(t)(zi,j)si,j

)

nl −
n∑

i=1

l∑
j=1

E
	

(t)(zi,j)

, p
(t+1)
d :=

n∑
i=1

l∑
j=1

E
	

(t)(zi,j)si,j − p
(t+1)
fp

n∑
i=1

l∑
j=1

E
	

(t)(zi,j)

(1 − p
(t+1)
fp )

n∑
i=1

l∑
j=1

E
	

(t)(zi,j)

. (8)

Finally we consider the way of computing efficiently each conditional expectation E
	

(t)(θ̃i,k),
E
	

(t)(θ̃2
i,k), E

	
(t)(zi,j). Taking advantage of our discretized formulation, we can utilize Dynamic

Programming (DP) and compute values of these conditional expectations efficiently.
Notice that the probability we get si from S can be rewritten in the form of

Pr(si | S) =
∑

1≤θ̃i,1<···<θ̃i,r≤l




r∏
m=1

g(θ̃i,m; θm, σ2
m) ·

l∏
j=1

pbit error(si,j ; 0, pd, pfp)

·
r∏

m=1

pbit error(si,θ̃i,m
; 1, pd, pfp)

pbit error(si,θ̃i,m
; 0, pd, pfp)

}
.

Let ξi,1(x, k), ξi,2(x, k) be defined as follows:

ξi,1(x, k) =
∑

1≤θ̃i,1<···<θ̃i,k≤x




k∏
m=1

g(θ̃i,m; θm, σ2
m) ·

x∏
j=1

pbit error(si,j ; 0, pd, pfp)

·
k∏

m=1

pbit error(si,θ̃i,m
; 1, pd, pfp)

pbit error(si,θ̃i,m
; 0, pd, pfp)

}
, (9)



ξi,2(x, k) =
∑

x≤θ̃i,k<···<θ̃i,r≤l




r∏
m=k

g(θ̃i,m; θm, σ2
m) ·

l∏
j=x

pbit error(si,j ; 0, pd, pfp)

·
r∏

m=k

pbit error(si,θ̃i,m
; 1, pd, pfp)

pbit error(si,θ̃i,m
; 0, pd, pfp)

}
. (10)

Note that Pr(si | S) = ξi,1(l, r) = ξi,2(1, 1).
Then the conditional probability given S, s1, · · · , sn that θ̃i,k = x is

Pr(θ̃i,k = x | S, s1, · · · , sn) = Pr(θ̃i,k = x | S, si) =
Pr(si ∩ {θ̃i,k = x} | S)

Pr(si | S)

=
1

ξi,1(l, r)
· ξi,1(x − 1, k − 1) · g(x; θk, σ2

k)pbit error(si,x; 1, pd, pfp) · ξi,2(x + 1, k + 1). (11)

The main advantage of using such ξi,1(x, k), ξi,2(x, k) is that we can represent these ξi,1(x, k),
ξi,2(x, k) in the following inductive forms:

ξi,1(x, k) = ξi,1(x − 1, k − 1) · g(x; θk, σ2
k)pbit error(si,x; 1, pd, pfp)

+ ξi,1(x − 1, k) · pbit error(si,x; 0, pd, pfp),

ξi,2(x, k) = ξi,2(x + 1, k + 1) · g(x; θk, σ2
k)pbit error(si,x; 1, pd, pfp)

+ ξi,2(x + 1, k) · pbit error(si,x; 0, pd, pfp).

Thus, using Dynamic Programming (DP), we can compute all values of ξi,1(x, k), ξi,2(x, k) in O(lr)
time and space (x = 1, · · · , l, k = 1, · · · , r). Hence we can compute the conditional probability given
S, s1, · · · , sn that θ̃i,k = x from (11). Therefore the conditional expectations can be computed as
follows (i = 1, · · · , n, j = 1, · · · , l, k = 1, · · · , r):

E
	

(t)(θ̃i,k | s1, · · · , sn) =
l−r+k∑
x=k

{
x · Pr(θ̃i,k = x | s1, · · · , sn)

}
, (12)

E
	

(t)(θ̃2
i,k | s1, · · · , sn) =

l−r+k∑
x=k

{
x2 · Pr(θ̃i,k = x | s1, · · · , sn)

}
, (13)

E
	

(t)(zi,j | s1, · · · , sn) =
r∑

k=1

Pr(θ̃i,k = j | s1, · · · , sn). (14)

Now we get the following proposition:

Proposition 1 All the values of conditional expectations E
	

(t)(θ̃i,k), E
	

(t)(θ̃2
i,k), E

	
(t)(zi,j) (i =

1, · · · , n,j = 1, · · · , l,k = 1, · · · , r) can be computed in O(nlr) time.

3.2 Cases with Unknown Orientation

Here we extend our algorithm to a general case that there happens orientation errors.
In this case the log likelihood function we want to maximize is

l(Ψ ) =
n∑

i=1

(1 − di) log Pr(si | S) +
n∑

i=1

di log Pr(si | S). (15)

We regard the problem of determining orientation of each molecule as a classification problem with
two mixture components, and utilize the concept of Classification EM (CEM) algorithm [3].



At each iteration, we first determine orientation of every molecule, by assigning 1 to each d
(t)
i if

Pr(si | S(t)) < Pr(si | S(t)) or 0 otherwise. Then we fix orientations and fulfill one iteration of the
EM algorithm in the previous subsection. In this case we replace each si,j with M(d(t))ij in (7), (8).
The whole algorithm goes as follows:

Algorithm 1

1. Compute initial solutions S(0) = θ(0),σ(0), p
(0)
d , p

(0)
fp for S = θ,σ, pd, pfp.

2. Start from t = 0 and repeat the following steps until convergence with sufficient accuracy:

2.1 Assign 0 or 1 to each d
(t)
i (i = 1, · · · , n).

2.2 Compute the conditional expectations E
	

(t)(θ̃i,k), E
	

(t)(θ̃2
i,k), E

	
(t)(zi,j) given S(t), M(d(t))

using DP (i = 1, · · · , n, j = 1, · · · , l, k = 1, · · · , r).
2.3 Compute the (t + 1)th estimate for each θk, σ

2
k (k = 1, · · · , r).

2.4 Compute the (t + 1)th estimate for pd, pfp.

3. If
∑n

i=1 d
(t)
i > n

2 , reverse the estimated map.

4 An Efficient Heuristic Algorithm for Initial Solution

Here we present an efficient heuristic algorithm to obtain initial solution of good quality. First we
explain how to determine initial θ, locations of restriction sites, with given r, σ, pd, pfp, where we
assume that σ = σ1 = · · · = σr in given initial σ. A method for determining initial r, σ, pd, pfp will be
presented later.

We regard the number of 1’s on the jth position of the data, that is,
∑n

i=1 si,j , as a frequency
on the jth position, and consider approximating distribution of this frequency by that of expected
frequency from some mixture of normal distributions. However, due to the existence of the orientation
errors, the distribution of 1’s in the data set cannot be approximated directly by that of the mixture
of normal distributions. To overcome this, we consider

∑n
i=1(si,j + s̄i,j) for j = 1, · · · , dl/2e, instead

of
∑n

i=1 si,j for j = 1, · · · , l, and enumerate r pairs j, j̄ = l − j + 1, at first. Then next we choose
exactly one of j, j̄ as an initial restriction site for each candidate enumerated at the first step. For
convenience, we assume that l is even. The precise definition of the algorithm based on the above idea
is as follows:

Algorithm 2

1. Compute cj =
∑n

i=1(si,j + si,l−j+1) for j = 1, · · · , l/2.

2. Repeat the following steps for r times:

2.1 Find jmax = arg maxj{cj}, and store the pair of jmax and the corresponding j̄max as a
candidate pair for the restriction site. If jmax has been already stored as a candidate in the
earlier step, we check jmax ± 1 and choose jmax − 1 or jmax + 1 with larger c value than the
other. If both of jmax ± 1 have also been already stored, we check jmax ± 2, and so on.

2.2 Update c values as cj := cj − n(1 − pfp)pdg(j; jmax, σ2) for j = 1, · · · , l/2.

3. Choose j or j̄ as an initial restriction site for r pairs of sites enumerated in step 2. There are
2r−1 possible combinations of the restriction sites, since we can fix, without losing generality, the
choice of j or j̄ for one of the r candidate pairs. We choose the combination which maximize∏n

i=1 max{Pr(si | S),Pr(si | S)}.



Here we present how to determine initial r, σ, pd, pfp from given data set s1, · · · , sn. Let N be the
total number of 1’s appearing in s1, · · · , sn, or, N =

∑n
i=1

∑l
j=1 si,j equivalently. If initial r, σ, pd are

given,

pfp =
N − nrpd

nl − nrpd
(16)

is the unbiased estimator for pfp. Thus we have only to determine initial r, σ, pd.
Our method to determine initial r, σ, pd is based on multi start heuristics. We test Algorithm 2

for all possible sets of r, σ, pd, such that

r = i, σ = {0.01 + 0.005(j − 1)}l, pd = 0.3 + 0.025(k − 1) (i = 1, · · · , 10, j = 1, · · · , 5, k = 1, · · · , 17).

Thus we test 850 possible sets for r = 1, · · · , 10, 0.01l ≤ σ ≤ 0.03l, 0.3 ≤ pd ≤ 0.7. We take as initial
values the set of r, σ, pd that maximizes the probability in step 3 of Algorithm 2 among all of these
850 possible start sets.

In practice, computing probability in step 3 contains O(nlr) times of computation of function
g(x;µ, σ2), which is too expensive to repeat Algorithm 2 many (850) times. Therefore, we compute
probability in step 3 of Algorithm 2 approximately in our program. Also we found that it is better
to introduce some penalty term when computing the probability in step 3 of Algorithm 2, in order to
avoid redundant expression by overestimating r. Details are in [8] and we omit explanations here.

5 Experimental Results

Here we show our experimental results. Due to the constraints on disclosure, we cannot present the
results with real data sets. Hence we show the results with our simulated data sets. Although we have
experimented with several sets of simulated data, we show only one of them here, since we have not
enough space. Our other results are available in [8].

In our result below, the location of each restriction site is represented by the relative position of the
unit interval (0, 1), and standard deviation σk associated to each restriction site is hence represented by
the value of this measurement. Computations were done on Sun UltraSPARC-II, 360 MHz workstation
with 2048 MB memory.

In our experiment, we set l = 200. We show a result with a data set of r = 7, pd = 0.3125,
pfp = 0.03, σ = σ1 = · · · = σ7 = 1/60. The expected number of false cuts per molecule is 6, and
45 % of molecules are reversed. In the standard case for real data sets, we believe, pd ≈ 0.5 and the
expected number of false cuts per molecule is about 1. Thus this example will be quite more difficult
than the actual cases, because of low digestion rate and a good many false positive noises. Locations
of restriction sites are

θ = (0.15000,0.30000,0.40000, 0.55000,0.80000, 0.85000,0.90000)T .

We used n = 100 molecules, and obtained an initial solution of

θ = (0.09750,0.16250, 0.21750, 0.45250,0.59250, 0.67750,0.87750)T ,
σ = (0.01000,0.01000,0.01000, 0.01000,0.01000,0.01000, 0.01000)T ,
pd = 0.30000, pfp = 0.03052,

after about 4 minutes computation. Then, by our local search algorithm, we obtained a true map

θ = (0.12865,0.28951, 0.40318, 0.54217,0.78121, 0.84100,0.90301)T ,
σ = (0.01078,0.02373,0.01786, 0.00796,0.01298,0.00983, 0.00959)T ,
pd = 0.35590, pfp = 0.02860,

after 74 iterations, and the computational time for local search was about 1.5 minutes. The stopping
criterion is maxk |θ(t+1)

k − θ
(t)
k | ≤ 10−2/l = 1/20000.
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Figure 1: Data set, initial solution, and final solution of simulated data with n = 100, r = 7, pd =
0.3125, pfp = 0.03, σ = σ1 = · · · = σ7 = 1/60.

In this case our heuristic algorithm for initial solution estimated the reversed map. However, the
local search algorithm could find the actual map owing to step 3 of Algorithm 1.

For a measure of accuracy of the solution map in comparison with the true map, we use the
Mislocation Measure percentage (MMP) error defined by Geiger and Parida [6]. The MMP error is
defined by, if the estimated number of restriction sites is correct, the percentage with respect to l of
the maximum of the absolute distance of a cut site in the true map from its corresponding cut in the
computed map. In this case the MMP error is about 2.2 % (with the case of θ1).

Fig. 1 shows the data set, the initial solution, and the final solution from left to right, respectively.
Each row of the image is a molecule with each dot indicating an observed cut site. In the images of
the initial solution and final solution, the molecules are oriented according to the solution computed
by the algorithm. The dash lines above each map show the locations of the actual restriction sites,
while the solid lines show the locations of the estimated restriction sites.

In other experiments, our algorithm sometimes overestimates r, the number of restriction sites.
However, our algorithm found all true restriction sites even for such cases, although it also answered
some extra cut sites. And it is often the case that this disadvantage of overestimating r can be
overcome by increasing n, the number of molecules.

6 Conclusions

In this paper we gave a statistical model for the ordered restriction map alignment problem, and
considered algorithms based on our model.

We formulated the problem in a statistical way, incorporating the merit of combinatorial approach
by using the discretized model in order to simplify the model. We defined our statistical model to
deal with three types of the error factors, sizing errors, false negatives or positives, and orientation
errors. Then we applied the EM algorithm for removing the noises of first two types of error factors,
assuming imaginary state in which only sizing errors take place. For orientation errors, we utilized
the concept of two-clustering.

Since the EM-type algorithms are local search algorithms, and their accuracy greatly depends on
the initial solution, we also proposed an efficient heuristic algorithm for finding initial solution with a
good quality.

In our experiments, our algorithm worked well for a data set which we believe more difficult than
the actual cases.

As for future works for this problem, we should deal with other types of error factors such as the
existence of spurious molecules or missing fragments. We should also examine more theoretically and
experimentally the property of the penalty term used in our heuristic algorithm for initial solution.
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