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Abstract

We present a lossless compression algorithm, GenCompress, for genetic sequences, based
on searching for approximate repeats. Our algorithm achieves the best compression ratios for
benchmark DNA sequences. Significantly better compression results show that the approximate
repeats are one of the main hidden regularities in DNA sequences.

We then describe a theory of measuring the relatedness between two DNA sequences. Using our
algorithm, we present strong experimental support for this theory, and demonstrate its application
in comparing genomes and constructing evolutionary trees.

1 Introduction

With more and more complete genomes of prokaryotes and eukaryotes becoming available and
the completion of human genome project in the horizon, fundamental questions regarding the
characteristics of these sequences arise. In this paper, we study one such basic question: the
compressibility of DNA sequences.

Life represents order. It is not chaotic or random [12]. Thus, we expect the DNA sequences that
encode Life to be nonrandom. In other words, they should be very compressible. There are also
strong biological evidences that support this claim: it is well-known that DNA sequences, especially
in higher eukaryotes, contain many (approximate) tandem repeats; it is also well-known that many
essential genes (like rRNAs) have many copies; it is believed that there are only about a thousand
basic protein folding patterns; it also has been conjectured that genes duplicate themselves sometimes
for evolutionary or simply for “selfish” purposes. All these give more concrete support that the DNA
sequences should be reasonably compressible. However, such regularities are often blurred by random
mutation, translocation, cross-over, and reversal events, as well as sequencing errors.

It is well recognized that the compression of DNA sequences is a very difficult task [5, 7, 16, 10].
The DNA sequences only consist of 4 nucleotide bases {a, c, g, t}, 2 bits are enough to store each base.
However, if one applies standard compression software such as the Unix “compress” and “compact”
or the MS-DOS archive programs “pkzip” and “arj”, they all expand the file with more than 2 bits
per base, as shown in Table 1, although all these compression software are universal compression
algorithms. These software are designed for text compression [2], while the regularities in DNA
sequences are much subtler.

It is our purpose to study such subtleties in DNA sequences. In this paper, we will present a DNA
compression algorithm, GenCompress, based on approximate matching that gives the best compression
results on standard benchmark DNA sequences.

One may treat compressibility study as the ultimate generalization of the simpler (and fruitful)
biological studies such as G-C contents of various species. We are acquiring more and more complete
genomes from the 5 megabase long E. coli to the 97 megabase long C. elegans. The 3 billion bases
of H. sapiens will also be available soon. More sophisticated studies on these sequences will give us



deeper understanding about the nature of these sequences. Different regions on a genome, different
genes, different species may have different compression ratios. Such difference may imply, for example,
different mutation rates in different genes [10].

In this paper, we study another interesting application of compressibility: to measure the
“relatedness” between two DNA sequences or two genomes. We will present an elegant theory defining
a symmetric distance between two sequences, and apply our compression algorithm to implement and
support this theory. Our new approach enables us for the first time to quickly construct correct
(consistent to the known phylogenies) trees from complete genomes.

The paper is organized as follows. In the next section, we discuss related work. In Section 3,
we will present the design rationale of GenCompress based on approximate matching. We will
present GenCompress in Section 4. Details of the algorithm will be given in that section as well.
Experimental results will be given in Section 5 and we compare our results with the two most effective
compression algorithms for DNA sequences: Biocompress-2 and Cfact. Our algorithm provides
significantly better results using standard benchmark DNA sequences in both cases. In Section 6, we
describe a theoretically well-founded measure between two DNA sequences. We use our algorithm to
compute a heuristic approximation to such a measure and demonstrate its application by constructing
phylogenetic trees from it.

In this paper, if not otherwise mentioned, we will use lower case letters u, v,w, x, y to denote finite
strings over the alphabet {a, c, g, t}. |u| denotes the length of u, the number of characters in u. ui is
the i-th character of u. ui:j is the substring of u from position i to position j. The first character of
u is u0. Thus u = u0:|u|−1. We use ε to denote empty string and |ε| = 0.

2 Related Work

Grumbach and Tahi [7, 8] proposed two lossless compression algorithms for DNA sequences, namely
Biocompress and Biocompress-2, in the spirit of Ziv and Lempel data compression method [21].
Biocompress-2 detects exact repeats and complementary palindromes located earlier in the target
sequence, and then encodes them by repeat length and the position of a previous repeat occurrence.
In addition, they also use arithmetic coding of order 2 if no significant repetition is found. In fact, the
difference between Biocompress and Biocompress-2 is the addition of order-2 arithmetic coding.

É. Rivals et al. [16] give another compression algorithm Cfact, which searches the longest exact
matching repeat using suffix tree data structure in an entire sequence. The idea of Cfact is basically
the same as Biocompress-2 except that Cfact is a two-pass algorithm. It builds the suffix tree in the
first pass. In the encoding phase, the repetitions are coded with guaranteed gain; otherwise, two-bit
per base encoding will be used. This is similar to the codeword encoding condition in Biocompress-2
except that the order-2 arithmetic coding is not used in Cfact. É. Rivals et al. [17] also designed a
compression algorithm as a tool to detect the approximate tandem repeats in DNA sequences.

Sadeh [18] has proposed lossy data compression schemes based on approximate string matching
and proved some asymptotic properties with respect to ergodic stationary sources. However, we are
not interested in lossy compression.

The lossless compression algorithm GenCompress in this paper achieves significantly higher
compression ratios than both Biocompress-2 and Cfact. Such improvement is vital to our applications.

In the second part of the paper we define a measure of “relatedness” between two DNA sequences.
Then we apply this measure to construct evolutionary trees. Different approaches have already been
proposed to define such a distance d(x, y) in [7, 20, 19, 4]. [7] proposed to use the conditional
compression. Using the ideas of Kolmogorov complexity (see [12]), Varre, Delahaye, and Rivals [20]
defined “transformation distance”. Essentially, this can be regarded as conditional compression using
biologically related operations. While very attractive, both of these measures are not symmetric,
and hence cannot be used in general. Authors of [20] also realized this problem and proposed to
use (d(x, y) + d(y, x))/2. Obviously such a definition is not well-founded. Situation in fact can be
salvaged by using a deep theorem proved in [3] (see Theorem 8.3.1 in [12]) and that leads to the



original definition of “information distance”. However, information distance [3, 12], while symmetric,
is also not a right measure in this case. On the other hand, biologists in [19, 4] proposed to use more
involved and laborious methods like counting the number of shared genes in two genomes or comparing
the ordering of the genes. We will introduce an elegant theory, a symmetric measure of relatedness
between two DNA sequences. We then justify it by applying this theory to biological data (genes and
genomes) using GenCompress as a tool.

3 Encoding edit operations

We consider three standard edit operations in our approximate matching algorithm. These are:

1. Replace. This operation is expressed as (R, p, char) which means replacing the character at
position p by character char.

2. Insert. This operation is expressed as (I, p, char), meaning inserting character char at p.

3. Delete. This operation is written as (D,p), meaning deleting the character at position p.

Let C denote “copy”, then the following are two ways to convert the string “gaccttca” to “gaccgtca”
via different edit operation sequences:

C C C C R C C C
g a c c g t c a or
g a c c t t c a

C C C C I C D C C
g a c c g t c a
g a c c t t c a

The first involves one replacement operation. The second involves one insert and one delete. It
can be easily seen that there are infinitely many edit sequences to transform one string to another.

A list of edit operations that transform a string u to another string v is called an Edit Transcription
of the two strings [9]. This will be represented by an edit operation sequence λ(u, v) that orderly
lists the edit operations. For example, the edit operation sequence of the first edit transcription
in the above example is λ(“gaccgtca”,“gaccttca”) = (R, 4, g); and for the second edit transcription,
λ(“gaccgtca”,“gaccttca”) = (I, 4, g), (D, 6).

If we know the string u and an edit operation sequence λ(u, v) from u to v, then the string v can
be constructed correctly using λ. There are many ways to encode one string given another. Using the
above example, we describe four ways to encode “gaccgtca” using string “gaccttca”.

1. Two bits encoding method. In this case, we can simply use two bits to encode each character,
i.e. 00 for a, 01 for c, 10 for g, 11 for t. Thus “10 00 01 01 10 11 01 00” encodes ”gaccgtca”. It
needs 16 bits in total.

2. Exact matching method. We can use (repeat position, repeat length) to represent an exact
repeat. This way, for example, if we use three bits to encode an integer, two bits to encode
a character, and use one bit to indicate if the next part is a pair (indicating an exact repeat)
or a plain character, then the string “gaccgtca” can be encoded as {(0,4), g, (5, 3)}, relative to
“gaccttca”. Thus, a 17 bits binary string “0 000 100 1 10 0 101 011” is required to encode the
{(0,4), g, (5, 3)}.

3. Approximate matching method. In this case, the string “gaccgtca” can be encoded as
{(0,8), (R, 4, g)}, or “0 000 111 1 00 100 10” in binary, with R encoded by 00, I encoded by
01, and D encoded by 11, and 0/1 indicating whether the next item is a doubleton or triple. A
total of 15 bits is needed.



4. For approximate matching method, if we use the edit operation sequence (I,4,g),(D,6). Then
the string “gaccgtca” can be encoded as {(0,8), (I, 4, g), (D, 6)}, or “0 000 111 1 01 100 10 1 10
110”, in total 21 bits.

From the above examples, we see that the approximate matching method in the third case has the
minimal number of bits to encode the string “gaccgtca” with reference to “gaccttca”.

4 GenCompress: an algorithm based on approximate matching

Lempel and Ziv proposed two algorithms in [21, 11] to compress universal data sequences. These are
dictionary based compression algorithms that rely on exact repeats. The Lempel-Ziv algorithms can
be viewed as having two components: the first component is to parse the input data sequence into
variable-length strings based on the history of the dictionary. The second component is to replace
the variable-length prefix by a proper binary codeword—concatenation of these codewords yields the
encoder’s output sequence in response to the input data sequence. We follow the same framework and
generalize it to approximate matching for DNA sequences.

GenCompress is a one-pass algorithm. It proceeds as follows: For input w, assume that a part of
it, say v, has already been compressed, and the remaining part is u, i.e. w = vu. GenCompress finds
an “optimal prefix” of u such that it approximately matches some substring in v so that this prefix
of u can be encoded economically. After outputting the code of this prefix, remove the prefix from u,
and append it to the suffix of v. Continue the process till u = ε.

4.1 Condition C, the compression gain function, and the optimal prefix
We adopt the following constraint in GenCompress to limit the search. If the number of edit operations
located in any substring of length k in the prefix s of u for an edit operation sequence λ(s, t) is not
larger than a threshold value b, we say that λ(s, t) satisfies the condition C = (k, b) for compression.
In GenCompress, we only search for approximate matches that satisfies condition C. This way we
limit our search space. Experiments show that setting C to (k, b) = (12,3) gives good results.

We also need to define a compression gain function G in order to evaluate if a particular
approximate repeat provides profit in the encoding. G is defined to be:

G(s, t, λ) = max{2|s| − |(|s|, i)| − wλ ∗ |λ(s, t)| − c, 0},
where

• s is a prefix of u,

• t is a substring appear at position i in v,

• 2|s| is the number of bits we otherwise use: 2 bits per base, |(|s|, i)| is the encoding size of (|s|, i),
• wλ is the weighted value of encoding an edit operation,

• |λ(s, t)| is the number of edit operations in λ(s, t),

• and c is the overhead proportional to the size of control bits.

Let input w = vu where v has already been processed. Given G(s, t, λ) and C, the optimal prefix
is a prefix s of u such that G(s, t, λ) is maximized over all λ and t such that t is a substring of v and
λ is an edit transcription from t to s satisfying condition C.

4.2 The parsing procedure based on approximate matching
The following parsing procedure finds the optimal prefix.

1. Initialize the condition C for compression and the compression gain function G; and set u = w
to the complete input string and v = ε to be the empty database.



2. Search for the optimal prefix s of u, with approximate match t in the database v.

3. Encode the repeat representation |(|s|, p)|, where p is the position of t, and the shortest edit
operation sequence λ(s, t). Output the code.

4. Remove prefix s from u, and append s to the database v. If u 6= ε, goto (2); else exit.

If the condition C is set such that no edit operation is allowed in the search region of the DNA
sequence, then we have an exact match algorithm. In addition, if the compression gain function G
is set to be |s|, i.e. the number of exact matching characters, the above parsing procedure will be
identical to the Lempel–Ziv parsing procedure.

4.3 The encoding procedure
Using the compression gain function G defined above, there are a lot of individual characters being
emitted because G(s, t, λ) = 0 for all s, t, λ is often the case. That is, there does not exist an
approximate match in the database for any prefix s of u that could help saving bits.

The encoding procedure is designed as follows [7]:

1. Initialize a data buffer to nil;

2. If G(s, t, λ) = 0, then append the first character of u into the data buffer;

3. If G(s, t, λ) > 0, then

(a) If the data buffer is not empty, add a flag to indicate there is a zone of individual characters
and encode them with the order-2 Arithmetic encoding [15, 2]; reset the data buffer to nil;

(b) Add another flag to indicate there is an approximate match and then encode the
approximate match (|s|, i) by the Fibonacci representation (a self-delimiting code) of
positive integers [1] and its edit operation sequence λ(s, t), where i is the position t appears
in v.

GenCompress also detects the approximate complemented palindrome in the DNA sequences. The
method is similar.

4.4 Implementing the optimal prefix search
The goal of GenCompress is to obtain sharp compression ratio for DNA sequences. The time
complexity consideration is secondary. However, since the genomes we are compressing are extremely
long, often over several million base pairs, simple minded exhaustive search for optimal prefixes
even with condition C takes too much time. To help reduce the search space, we first make a few
observations.

Lemma 4.1. An optimal prefix u0:l with G(u, v, λ) > 0 always ends right before a mismatch.

Proof. Assume that u0:l matches with vi:j by an optimal edit transcription sequence λ. If the next
character ul+1 matches with vj+1, then we can include ul+1 into the prefix to form prefix u0,l+1. So,

G(u0:l, vi:j , λ) − G(u0:l+1, vi:j+1, λ
′) = |Fibo(l + 1)| − |Fibo(l)| − 2

where λ′ is the natural extension of λ with one extra match, Fibo(l) denotes the Fibonacci
representation code [1] of integer l and |Fibo(l)| is its bit size. We know from [16] that, for any
positive integer i:

⌈ log (i
√

5 − 1)

log(1+
√

5
2 )

⌉
≤ |Fibo(i)| − 1 ≤

⌈ log (i
√

5 + 1)

log(1+
√

5
2 )

⌉
.

Thus |Fibo(l+1)|−|Fibo(l)| ≤ 1. Hence, we get G(u0:l, vi:j , λ) < G(u0:l+1, vi:j+1, λ
′). This contradicts

the fact that u0:l is an optimal prefix. �



In the search algorithm, we will first search for an exact repeat of a fixed small length l as the
prefix of each approximate repeat. This limits the search space. To implement it, we assign each
position in the sequence an integer value that is determined by the substring of length l that starts
from this position. Thus, we can search for repeats among those positions in the database that have
integer value equal to the current position. This method is easier than the one using suffix tree, which
needs two suffix trees for direct and palindrome repeats, respectively.

Also observe that a delete followed by an insert is simply a replace operation. We therefore limit
the search by not considering this kind of combinations. The following lemma states another simple
observation whose proof is simple and is left to the reader.

Lemma 4.2. Let λ be the optimal edit operation sequence from x to y. If yi is copied from xj in λ
when converting y to x, then λ(x0:i, y0:j) is also the optimal edit operation sequence among all the edit
operation sequences from x0:i to y0:j.

Combining these observations and more, our algorithm for optimal prefix search is outlined as
follows. The search for palindromes is implemented similarly.

1. Let w = vu where v has already been compressed.

2. Find all occurrences of u0:l in v, for some small l. For each such occurrence, try to extend it,
allowing approximate match, limited by the above observations and condition C. Return the
one with largest G value.

5 Experimental Results

We tested GenCompress on standard benchmark data used in [7]. These standard sequences, (available
at [14]) come from a variety of sources and include the complete genomes of two mitochondria:
MPOMTCG, PANMTPACGA (also called MIPACGA); two chloroplasts: CHNTXX and CHMPXX
(also called MPOCPCG); five sequences from humans: HUMGHCSA, HUMHBB, HUMHDABCD,
HUMDYSTROP, HUMHPRTB; and finally the complete genome from the two viruses: VACCG and
HEHCMVCG (also called HS5HCMVCG).

We implemented two versions of GenCompress: GenCompress-1 searches for approximate repeats
with replacement operations only (i.e. Hamming distance); and GenCompress-2 searches for
approximate repeats based on the edit operations described in Section 3. The definition of the
compression ratio is the same as in [7], i.e. 1 − (|O|/2|I|), where |I| is number of bases in the
input DNA sequence and |O| is the length (number of bits) of the output sequence. The compression
ratios of GenCompress, as well as those of it Biocompress-2 and some other compression algorithms,
are presented in Table 1. We have also compared GenCompress with Cfact from [16] in Table 2,
using the data from [16]. It is amusing to see that although Cfact looks for the best matches globally
whereas our GenCompress only searches for the best approximate match from the current prefix to
the part of the text seen so far, GenCompress has much better compression ratio than Cfact. From
these experiments, we conclude that approximate matching plays a key role in finding similarities or
regularities in DNA sequences.

GenCompress is able to detect approximate matches of any edit distance, including exact repeats.
Fig. 1 shows the repeat pattern for sequences HUMGHCSA and VACCG. All these repeats can
be positively compressed with a proper compression gain function. When there are not enough
approximate repeats in the data sequence as shown in Fig. 1 for VACCG, GenCompress fails to
achieve higher compression ratio than Biocompress-2.

In conclusion, the compression results of GenCompress for DNA sequences indicate that our
method based on approximate matching is more effective than others. GenCompress is able to detect
more regularities and achieve best compression results by using this observation.
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Figure 1: The number of profitable approximate repeats, found by GenCompress, in sequences
HUMGHCSA and VACCG.

Table 1: Compression Ratios. The last column is the improvement of GenCompress-2 over
Biocompress-2.

sequence size compress arith-2 Biocompress-2 GenCompress-1 GenCompress-2 improvement
MTPACGA 100314 -5.81% 6.37% 6.24% 6.88% 6.88% 10.26%
MPOMTCG 186608 -10.11% 1.72% 3.11% 4.71% 4.71% 51.45%
CHNTXX 155844 -9.36% 3.31% 19.14% 19.27% 19.27% 0.68%
CHMPXX 121024 -3.73% 8.17% 15.76% 16.38% 16.35% 3.74%

HUMGHCSA 66495 -9.68% 3.11% 34.63% 44.99% 44.76% 29.25%
HUMHBB 73323 -9.73% 4.08% 6.16% 8.98% 9.04% 46.75%

HUMHDABCD 58864 -11.48% 2.87% 6.15% 9.27% 9.04% 46.99%
HUMDYSTROP 38770 -11.66% 3.80% 3.69% 3.88% 3.87% 4.88%

HUMHPRTB 56737 -10.12% 3.56% 4.67% 7.67% 7.67% 64.24%
VACCG 191737 -8.37% 5.10% 11.93% 11.94% 11.93% 0.00%

HEHCMVCG 229354 -10.65% 1.76% 7.60% 7.65% 7.65% 0.66%

Table 2: Compression Ratios. The last column is the improvement of GenCompress-2 over Cfact.

sequence size LZW 15 arith-2 Cfact GenCompress-1 GenCompress-2 improvement

atatsgs 9647 -11.83% 2.44% 10.75% 16.58% 16.25% 51.16%

atef1a23 6022 -14.85% 0.30% 20.77% 22.96% 23.10% 11.22%

atrdnaf 10014 -15.00% -0.46% 9.30% 10.59% 10.63% 14.30%

atrdnai 5287 -11.97% 0.28% 26.60% 29.00% 29.50% 10.90%

hsg6pdgen 52173 -8.42% 3.14% 3.59% 9.85% 9.44% 162.95%

xlxfg512 19338 -4.19% 3.86% 25.49% 31.67% 31.07% 21.89%

mmzp3g 10833 -12.18% 2.37% 4.44% 7.40% 7.22% 62.61%

celk07e12 58949 -5.41% 4.38% 14.33% 19.14% 18.73% 30.70%



6 Relatedness Between Two DNA Sequences

In many methods (quartet methods, neighbor joining, UPGMA, Fitch’s least squares) of constructing
phylogenetic trees, the first step is to evaluate the “distance” between pairs of DNA sequences.
Sequences that are “close” to each other are required to be “close” to each other on the evolutionary
tree. Distances such as minimum alignment score works for closely related genes. They fail to handle
simple changes like reversal and translocation. They do not apply to more than one gene and noncoding
regions. A tree constructed using one gene is often different from that using another. Measures such
as genome rearrangement distance, reversal distance studied in the CS community and the number of
shared genes [19] or gene order [4] studied recently in the biology community are examples of other
specialized distances. These distances are not expected to be general distance measures.

How do we define a proper measure between a pair of DNA sequences? Authors in [7] and [20]
propose to use conditional compression to evaluate the distance or “relatedness” between two DNA
sequences. They further demonstrated how to use compression to construct an evolutionary tree.
Although this looks like an attractive proposal, it has a fatal problem: the distance is not symmetric!
Let us use the notation

Compress(u|v)

to mean the length of compressed result of u given v for free (as database), and we write Compress(u)
for Compress(u|ε), and

CompressRatio(u|v)

to mean the compression ratio of u given v for free. Then, theoretically [12],

Compress(u|v) 6= Compress(v|u), and

CompressRatio(u|v) 6= CompressRatio(v|u).

This was even apparent in the experiments performed in [7] where the following ratios were obtained
using Biocompress-2:

CompressRatio(brucella|rochalima) = 55.95%, and

CompressRatio(rochalima|brucella) = 34.56%.

One wonders what if there is another sequence u such that

CompressRatio(u|brucella) = 45%, and

CompressRatio(brucella|u) = 44%?

Then, is brucella closer to u or closer to rochalima? Authors in [20] have realized this problem and
proposed to use something like (Compress(u|v) + Compress(v|u))/2. But neither does this provide
the right theory, nor does it solve the practical problem.

We now formulate a symmetric distance using a beautiful theorem from Kolmogorov complexity.
We will do this only informally. For formal definitions and proofs, we refer the reader to [12]. Let
K(u|v) be the conditional Kolmogorov complexity of string u condition on string v, that is, K(u|v) is
the length of the shortest program that outputs u given v as input. K(u) = K(u|ε) is the unconditional
Kolmogorov complexity of u, or the length of the program that outputs u, on empty input. The
following theorem (due to Kolmogorov and Levin) is well-known, see Theorem 3.9.1 in [12].

Theorem 6.1. (Symmetry of Information) Within an additive logarithmic factor,

K(u|v) + K(v) = K(v|u) + K(u). (6.1)



Rearranging Equation 6.1, we obtain

K(u) − K(u|v) = K(v) − K(v|u).

K(u)−K(u|v) is information in v about u, and K(v)−K(v|u) is information in u about v. Theorem 6.1
says the information in v about u is equal to the information in u about v. This measure is symmetric
and it measures precisely what we want to measure: the mutual information or relatedness of two
sequences. Taking the sequence length into consideration, we propose to use

R(u, v) =
K(u) − K(u|v)

K(uv)
=

K(v) − K(v|u)
K(uv)

to measure their relatedness and 1 − R(u, v) as their distance. Initially, we used |u| + |v|, instead of
K(uv) as the denominator. But such a definition is problematic when measuring relatedness among
u, v and uu. Now we can also explain why the proposal of using K(u|v) is not correct but worked
nicely in some cases [20]: this is because it ignores the self-compressibility of u. When u and v are
roughly equally long and are both not very compressible (often this is the case), then K(u|v) can be
used to replace K(u) − K(u|v). Information distance, defined as max{K(u|v),K(v|u)} ([3, 12]), fails
for several other reasons.

It has not escaped our notice that the distance measure we have postulated can be immediately
used to construct evolutionary trees from DNA sequences that cannot be aligned, such as complete
genomes. Let us use Compress(u) to heuristically approximate K(u) and use Compress(u|v) to
heuristically approximate K(u|v). We have converted our GenCompress program into the conditional
version and performed small scale preliminary experiments. We have randomly taken 16S rRNA (and
18S rRNA for Eukaryotes) genes from the GenBank, [14], for the following species:

• Archaebacteria: H. butylicus, Halobaculum gomorrense

• Eubacteria: Aerococcus urina, M. glauca strain B1448-1, Rhodopila globiformis

• Eukaryotes: Urosporidium crescens, Labyrinthula sp. Nakagiri. These are 18S rRNA genes in
eukaryotes, corresponding to 16S rRNA in prokaryotes.

The R(u, v) for each pair of these genes is calculated in Table 4. Observe the symmetry in the
table: R(u, v) ≈ R(v, u), as predicted by our theory. From these distances, we obtain directly the
evolutionary tree in Fig. 2 (left tree), which is the phylogeny given in the GenBank.

We have further experimented on two sequences atrdnai and atrdnaf from [16]. They have very
different lengths: |atrdnai| = 5287 bases; |atrdnaf | = 10014 bases. But,

Compress(atrdnai)− Compress(atrdnai|atrdnaf ) = 6887 bits

Compress(atrdnaf )− Compress(atrdnaf |atrdnai) = 6937 bits, and

R(atrdnai, atrdnaf) = 37.29%; R(atrdnaf, atrdnai) = 37.56%

showing our heuristics is very close to the theoretical prediction.
We expect this approach to be an alternative to simple alignment distance when comparing not

closely related sequences and genomes. To further demonstrate the power of this method, we have
performed another small scale experiment with seven complete genomes from [14]:

• Archaea Bacteria: Archaeoglobus fulgidus (u1), Pyrococcus abyssi (u2), Pyrococcus horikoshii
OT3 (u3)

• Bacteria: Escherichia coli K-12 MG1655 (u4), Haemophilus influenzae Rd (u5), Helicobacter
pylori 26695 (u6); Helicobacter pylori, strain J99 (u7).



Table 3: Compress(u) (# bits) of sequences u .
Sequences u H. butylicus H. gomorrense A. urina M. glauca R. globiformis L. sp. Nakagiri U. crescens
Compress(u) 2571 2891 2781 2695 2947 3260 3724

Table 4: Relatedness R(u, v) between all pairs u, v.
∗The sequences in the first column and first row are u and v, respectively.
†This is the length (# bases) of the input sequence.
‡This is the length (# bits) of conditionally compressed file between two u and v.
§This is R(u, v).

Sequences* H. butylicus H. gomorrense A. urina M. glauca R. globiformis L. sp. Nakagiri U. crescens

H. butylicus 2436‡ 2527 2572 2534 2546 2572
1277† 2.53%§ 0.83% -0.02% 0.68% 0.43% -0.02%

H. gomorrense 2779 2892 2892 2869 2892 2892
1437 2.10% -0.02% -0.02% 0.38% -0.02% -0.02%

A. urina 2738 2782 2310 2305 2761 2782
1382 0.81% -0.02% 9.41% 9.06% 0.33% -0.02%

M. glauca 2696 2696 2223 2095 2696 2696
1339 -0.02% -0.02% 9.43% 11.90% -0.02% -0.02%

R. globiformis 2909 2925 2475 2341 2948 2948
1465 0.69% 0.38% 8.99% 12.02% -0.02% -0.02%

L. sp. Nakagiri 3241 3261 3241 3261 3261 2567
1621 0.33% -0.02% 0.32% -0.02% -0.02% 11.02%

U. crescens 3725 3725 3725 3725 3725 3038
1853 -0.02% -0.02% -0.02% -0.02% -0.02% 10.90%

The distance matrix and the derived phylogeny are given in Table 5 and Fig. 2 (right tree). Cur-
rently together with J. Badger, P. Kearney, H. Zhang, we are doing extensive studies on genome
phylogeny using this method on the mitochondrial genomes and all the complete genomes in [14].
Preliminary results are very encouraging. Those results will be reported elsewhere.
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Figure 2: An rRNA tree and a genome tree.
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Table 5: Relatedness R(u, v) between all pairs u, v.

Sequence* u1 u2 u3 u4 u5 u6 u7

u1 4226821‡ 4226743 4228299 4228411 4228356 4228392
2178400† 0.018326§ 0.019550 -0.000548 -0.002399 -0.001765 -0.002259

u2 3443540 3391432 3445299 3445242 3445257 3445264
1765118 0.023072 0.797546 0.000089 0.000988 0.000812 0.000705

u3 3362288 3310372 3364086 3363996 3364031 3364045
1738505 0.023055 0.794383 -0.000391 0.000617 0.000109 -0.000109

u4 8920179 8920362 8920294 8914204 8919249 8919224
4639221 0.000373 -0.001084 -0.000537 0.048760 0.008160 0.008371

u5 3440205 3440216 3440229 3434165 3439033 3439068
1830138 0.000274 0.000145 -0.000044 0.049059 0.018303 0.017776

u6 3079174 3078992 3079021 3077924 3077935 1226333
1667867 -0.002217 0.000307 -0.000140 0.009068 0.016523 43.069863

u7 3075330 3075285 3075238 3074059 3073952 1219515
1643831 -0.001314 -0.000782 -0.000062 0.009796 0.019680 43.171044
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