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Abstract

We present a strategy for generating a multiple alignment from a hidden Markov model (HMM)
for low identity, low similarity protein sequences. In this approach the ordered-series-of-motifs and the
motif-intervening-regions are independently modeled. We also provide a measure of multiple alignment
“goodness” called the stability function to compared one alignment to another. This strategy provides
a more robust HMM representing highly divergent sequence data.

1 Introduction

RNA genomes (e.g., HIV, Ebola and Measles) can replicate and accumulate errors at a rapid rate. This
ability creates a population called a quasi-species comprised of a consensus master genome sequence
accompanied by a mutant cloud (Domingo and Holland 1997 [3]). These mutated RNA genomes provide
a highly divergent set of co-linear genes encoding a variety of enzymatic and structural proteins. Many of
the proposed relationships among the protein sequences encoded by these genes fail statistical criteria for
homology (Schwartz and Dayhoff 1978 [20]; McClure 1992 [12]; Zanotto, Gibbs et al. 1996 [22]). When
proteins are this highly divergent the regions of common residues, the ordered-geries-of-motifs (OSM),
are those that contribute to the function or structural integrity of the protein (McClure 1991 [11]).

The correct identification of the OSM among a set of protein sequences is the first step in multiple
sequence alignment (McClure, Vasi et al. 1994 [16]). The second step requires the alignment of regions
between the functionally selected OSM. The motif-intervening-regions, (MIRs) are less constrained by the
functional selection operating on the OSM. The MIR, however, can be constrained by selection pressures
specific to sub-classes of the sequence set and often changes more rapidly relative to the OSM. MIRs can
vary widely in size, and amino acid composition.

To access the maximum information contained in primary structure data both the OSM and MIRs
must be aligned as precisely as possible. The OSM defines a pattern among the sequences that allows
the possibility of common function and ancestry. The MIRs can define sub-class functional specificities
and additional sub-class motifs. These regions contain information important in the reconstruction of the
phylogenetic history of the protein sequences. All positions in the alignment provide data that can be used
to test a wide variety of evolutionary hypotheses regarding gene and genome construction. Automated
generation of a multiple alignment of large numbers of low identity, low similarity protein sequences
sufficient for maximal recovery of the OSM and MIRs remains a challenge in the field of bioinformatics.

The HMM approach to multiple sequence alignment (Baldi, Chauvin et al. 1994 [2]; Krogh, Brown et
al. 1994 [8]; Eddy 1995 [5]; Hughey and Krogh 1996 [6]) provides a flexible method that can incorporate
a priori knowledge into the model. We have demonstrated that anchoring an OSM in the same position
within a set of subclass HMMs creates a series of models that generate better multiple alignments repre-
senting highly divergent sequences than a single model with or without OSM anchoring. In the course of
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these studies we also developed a basic stability measure to rank comparable multiple alignments (Mc-
Clure and Kowalski 1999 [14]), although we are currently working on a refinement of this function. The
studies presented here address two aspects of multiple alignment of highly divergent protein sequences:
1) a method for identifying the OSM; and 2) independent modeling of the MIRs.

2 Materials and Methods

All analyses were conducted on SUN Ultras (1/140 and 1/170) or SPARCstations (4, 5 or 10/514MP)
running SunOS Release 5.5 or 5.6. Version 2.0 of Sequence Alignment and Modeling (SAM) was used for
all multiple alignment studies (Krogh, Brown et al. 1994 [8]; Hughey and Krogh 1996 [6]).

2.1 Biological data

The protein family used in this study is the reverse transcriptase (RT), one of the two well-characterized
domains of the RNA-dependent DNA-polymerase (RDDP). The RT domain is found in the amino por-
tion of the RDDP encoded by different viruses (retroviruses, Hepadna-, Caulimo- and Badnaviruses),
RNA-dependent transposable elements and other agents that inhabit a wide variety of Eubacterial and
Eukaryotic hosts. The sequences in this study contain the well-defined OSM of the RT domain (Doolittle,
Feng et al. 1989 [4]; Xiong and Eickbush 1990 [21]; McClure 1991 [11]) that has been confirmed to be of
importance by X-ray crystal determination (Kohlstaedt, Wang et al. 1992 [7]).

The RT test sequences were obtained from GenBank, with the exception of one sequence from the
Saccharomyces Genome Database. Two types of data sets were analyzed in the motif detection study,
a 20 sequence data set and a 497 sequence data set. The 20 sequences were extracted from the 497
sequences using a program that generates pairwise similarity scores based on the Needleman-Wunsch al-
gorithm (Needleman and Wunsch 1970 [17]), and CLUSTER, an in-house hierarchical clustering method.
The pairwise sequence identity, based on the number of common amino acid residues, among this set of
20 sequences ranges from 7-48%. This range represents the average observed identity between the major
groupings of RT sequences. The sequence similarity, based on the conservative substitution of amino
acids, is also low. We refer to data of this type as low identity, low similarity (LILS) sequences. The data
set includes an even distribution of RT sequences from the following groups: retroviruses (HT13, NVV0,
SFV1, HERVC); gypsy retrotransposons (GMG1, GM17, MDG1, MORG); copia retrotransposons (CAT1,
CMC1, CST4, C1095); non-long terminal repeat retroposons (NDMO0, NL13, NLOA, NTC0); and retroin-
trons (ICDO, TAGO, ICS0, IPL0). GenBank accession number are L36905, M60610, X54482, M10976,
M77661, X01472, X59545, 727119, X53975, X02599, M94164, M22874, 1.L19088, X60177, M62862, X98606,
U41288, X71404, 248620, with the exception of the Copia agent which is from the Saccharomyces Genome
Database.

2.2 Motif-identification programs

The motif-detection programs used in this study are MEME (Multiple Expectation Maximization for
Motif Elicitation), PROBE and SAM. MEME and PROBE are local alignment methods that seek to
locate and align an OSM without regard to the intervening regions. SAM is a global alignment method
that attempts to align the entire length of a set of sequences. Initial studies included six local alignment
methods for motif detection. This study only presents the results of two of these methods, MEME and
PROBE, versus the SAM implementation of the HMM approach.

Both MEME and SAM methods locate motifs by estimating the parameters for a model that max-
imizes the likelihood of the data. MEME starts by breaking up the data into overlapping sequences of
specified length (Bailey and Elkan 1994 [1]). The MM (Mixture Model) algorithm creates a finite mixture
model of the new data set that consists of two components, the motifs and the motif-background proba-
bilities. The Expectation Maximization algorithm estimates and maximizes the expected log likelihood
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value of the model parameters. The SAM program is a linear HMM that implements the Baum-Welch
algorithm (Krogh, Brown et al. 1994 [8]; Hughey and Krogh 1996 [6]). The parameters estimated are the
transition and observation probabilities. Once the model converges, a multiple alignment can be created
and motifs detected.

The PROBE program implements the Smith-Waterman algorithm to perform transitive searches for
finding regions of sequence similarity (Neuwald, Liu et al. 1997 [19]). The sequences collected from
this search are purged to eliminate unequal representation of the data and then aligned co-linearly using
the Gibbs sampling algorithm (Lawrence, Altschul et al. 1993 [9]; Neuwald, Liu et al. 1995 [18]).
The Gibbs sampling algorithm starts with a random position for all of the sequences except one. The
excluded sequence is aligned to the others. This process is reiterated until the information content score
is maximized. After Gibbs sampling, a genetic algorithm is used to recombine a random alignment and
select the best alignment produced. This alignment is used to search for more sequences, which are
included in another iteration starting with the Gibbs sampling.

2.3 Strategy
2.3.1 Motif-identification

The best results for each method were obtained by performing parameter range studies with the LILS
sequence data set. Initially, each program was executed using the default parameters. User-specified
parameters were changed according to the description of their function and default values. A range of
values for each parameter was tested to determine the effects on motif detection. The changes from the
default parameters that produced significantly better results are included in Table 1. Parameter settings
for the 497 sequence tests were derived from tests on the LILS data set.

Program performance is assessed by the correct identification of the amino acids of each motif (Fig. 1).
Individual program scores counsist of six values, one for each motif of the OSM. Each value is equal to
the percentage of sequences in which the motifs are correctly identified.

2.3.2 Independent modeling of the MIRs

2.3.2.1 Types of MIR Models

A priori knowledge of the MIRs is provided by the identification of each motif of the OSM within
each sequence. A multiple alignment in which only the OSM is modeled is used to extract the MIRs
of each sequence. Each motif of the OSM is cut at the most conserved amino acid residue in an effort
to provide a constraint on the edges of the MIRs. Each of the seven MIRs of the RT sequences is then
independently modeled. There are two types of MIRs, internal and external. Internal MIRs are bordered
by two motifs (more constrained) while external MIRs are not. Currently we do not distinguish between
these two types of MIRs.

Two types of models representing each MIR were tested. A de movo model is generated by training
each data set (20 sequences) with an internal sequence weighting to correct for sampling bias as provided
by the SAM software. Determination of the number of sub-classes is based on the clustering of their
pairwise similarity scores. The LILS data set contains five sub-classes. A set of sub-class models are
generated by differential weighting of the sequences based on their inclusion/exclusion in each class. As
determined in earlier studies, allowing model surgery can improve de novo modeling, but not sub-class
models. As stated in the SAM manual, currently the feature performing surgery between sub-class models
representing amino acids is not implemented.

De novo models are run with surgery and sub-class MIR models without surgery. Both types of models
are run with and without OSM anchoring at MIR, borders. Model surgery is a feature of the SAM software
that allows the addition or deletion of states after training based on the number of sequences that invoke
a particular state. The SAM software allows for designation of special node types within the model. The
special nodes are immune to model surgery. Two types of special nodes are used in the studies presented
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I II III IV \Y VI
HT13 pvkKa--  t-IDLkdaf -LPQG-fk qYMDDI1l shGLP-  kFLGqii
NVVO ikkK---  tilDIgday -LPQG-wk -YMDDIyi  qyGFM-  kWLGfel
SFV1 pvpKp——  ttLDLtngf -LPQG-f1 aYVDDIyi naGYV-  eFLGfni
HERVC pvpKp--  tcLDLkdaf -LPQR-fk qYVDDL11  tvGIRc  cYLGfti
GMG1 mvrKa--  tkVDVraaf -CPFG-la  aYLDDI1i  --GLN-  kYLGfiv
GM17 v-pKkagd  ttIDLakgf  -MPFG-1lk  vYLDDIiv  --NLK-  tFLG-hv
MDG1 1vpKksl  scLDLmsgf  -LPFG-1lk  1YMDDLvv  --NLK-  tYLG-hk
MORG vvrKk--  ttMDLgngf  -APFG-fk  1YMDDIiv  --GLK-  hFLG-hi
CAT1 1vdKpkd egMDVktaf  kSLYG-1k  1YVDDMli  -1SME-  rILGidi
CMC1 --tKrpe  hqgMDVktaf  kAIYG-1lk  1YVDDVvi ---KR-  hFIGiri
CST4 ftkKrng  t-LDInhaf  kALYG-1lk  vYVDDCvi  inKLK-  dILGmdl
C1095 fnrKrdg  tqlLDIssay  kSLYG-1k  1FVDDMil  itTLKk dILGlei
NDMO mihKt--  afLDIqgaf gVPQGsvl  tYADDTav  nwNVR-  kYLGitl
NL13 1lipKp——  s-IDAekaf gTRQGcpl  1FADDMiv  vsGYK-  kYLGiql
NLOA fipKa--  aflLDIegaf gCPQGgvl gYADDIvi  evGLN-  KkYLGvi-
NTCO vlrKp——  amLDGrnay gVRQGmvl aYLDDVtv  alGIE-  rVLGagv
ICDO eipKp——  vdIDIkgff gTPQGgil rYADDFki  r1DLDi  dFLGfkl
IAGO fkkKt--  ieGDIksff  gVPQGgii  rYADDWlv  elKIT1  -FLGvnl
ICSO wipKp——  1dADIskcf  gTPQGgvi  rYADDFvi  emGLEl1 nFLGfnv
IPLO yipKs-—-  1leADIrgff gVPQGgpi  rYADDFvv  srGLV1  dFVGEnf

Figure 1: The six motifs of the RT OSM are indicated by roman numerals (I-VI). The bold and capitalized
letters represent the core amino acids of each motif used to score the programs in this study. Dashes
represent gaps in the alignment. Abbreviations on the left side bar are defined in Section 2 (materials
and methods). The individual motifs of the OSM have varying levels of conservation. The order of
conservation for the motifs, from high to low, is as follows: IV > II > VI > III > I or V. The OSM in the
RT protein is well-characterized and these motifs are used to evaluate the performance of motif detection
methods.

here to anchor the OSM within each MIR model. Type A nodes are invariant and cannot undergo further
training. Type K nodes undergo transition training but not match or insert training. The core amino
acid residues of the motif are assigned Type A nodes, while the amino and carboxyl residues of the motif
are designated as Type K. This designation allows for the transition training into and out of the Type A
nodes representing the OSM.

In the sub-class MIR models OSM anchoring is performed by designation of Type A and K nodes
at the same positions in each model. Generic nodes are then added to represent the MIR equal to the
largest number of amino acid residues present in each region in the sequence data set. The generic nodes
are then trained by use of sub-class weighting. The five sub-class models were generated by differentially
weighting all sequences within one sub-class (75%), relative to the other four sub-classes (25% total)
during the training session. The end result is a set of sub-class models with amino acid probabilities at
each node representing both OSM and MIR that have been independently modeled.

The end result of MIR modeling produces separate models. Unfortunately the model concatenation
subroutine of the MODIFYMODEL program available in the SAM software package does not currently
work. An alternative approach is to align the appropriate subsection of each sequence to each MIR model.
In-house software then stacks the MIR alignments and another program concatenates the sub-sections
into a complete multiple alignment for scoring.

Each data set was used to train each model type with two different prior libraries: 1) the amino acid
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frequency of the training set, and 2) a 20-component Dirichlet mixture as provided in the SAM package.

2.3.2.2 Model parameter settings and alignment scoring

All models were run at the default parameter settings except: Nmodels = 5, Nsurgery = 5,
del_jump_conf= 50, match_jump_conf =50, ins_jump_conf = 50 and insconf = 100000 (McClure and
Raman 1995 [15]). In the de novo models the internal weight = 2. In the sub-classification models this
parameter is set to zero so that our differential weighing is not modified.

The multiple alignment scoring method used in the evaluation of alignments generated by the HMMs
is designed to reflect the types of changes made by a human expert in refining a multiple alignment.
Given that we cannot know all the possible mutations of the fast evolving MIRs, a parsimony approach
is taken in the refinement. Changes are introduced when obvious regions of identify or similarity are not
detected by the alignment method or when alternative positioning of insertions/deletions would either
increase the similarity among the MIR or minimize mutational events necessary to align one sequence
to another. Our scoring method shows a positive correlation with the OSM count scoring used in our
previous HMM construction studies.

The stability measure algorithm is given by:

S = (Zn:—(Li/T)(log(l-UJrC— (Li/T))))/n, (1)

i=1

where S is the alignment score, n is the alignment length, L; is the count of the largest group found at
column ¢, T is the total number of sequences in the alignment, ¢ is a constant currently set to 0.03, log
is the logarithm base 2. The constant, ¢, can be any value greater than zero. It prevents the stability
function from having a value of infinity with a full column count. It also allows for scaling of the stability
values. At the current setting the column scores range from 0.003 for a 0% column count to 3.0 for a
100% column count. The current implementation of the algorithm produces three scores, M, M1, and
M2, based on the largest group count of each column. The amino acid counts are currently based on
three sets: 1) the amino acid identities, (M); 2) ILMV, AG, ST, DE, NQ, C, FY, W, RK, H, P, (M1);
and 3) ILMV, AGPST, DENQ, FYW, RKH, C, (M2). Each member of a group receives a count of one.

3 Results
3.1 Identification of the RT OSM

The best results from the 20 LILS sequences (a fairly smooth distribution representing the larger data
set) and the 497 sequences (highly biased towards retroviruses) are presented in Table 1. For each motif,
a score is reported in terms of the percentage of sequences in which the motif was correctly identified.
All three methods detected the OSM for all 20 sequences in the LILS data set (Fig. 1) to some degree.
Although the SAM method locates the OSM, it does not perform well in the recognition of individual
motifs. All motifs, except motif II, are detected as subsets of correctly aligned motifs that are not aligned
with the largest set of correctly identified motifs (indicated by an asterisk in Table 1). Scores for MEME
and PROBE demonstrate that differences in program performance are not significant for the 20 LILS
data set. The results of both MEME and PROBE coincide with the known information about motif
conservation. The results for the LILS test clearly indicate that the local methods, MEME and PROBE,
outperform the global method, SAM.

Program results for the 497 sequence data set are presented in Table 1. As expected, the accuracy of
the SAM method in identifying motifs increases with the number of training sequences. Results improved
significantly for the modeling and motif identification of the 497 sequence data set.

In the large, biased data set test, both MEME and PROBE eliminate sequences from the results, but
for different reasons. MEME excludes sequences when it is unable to locate a motif in that sequence.
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Table 1: Motif Scores and Parameter Options for RT Sequences.

SEQUENCE# PROGRAM 1I(1) II(3) III(4) IV(5) V(3) VI(3) PARAMETERS?®
20 MEME 95 100 100 100 70 95 mod oops; nmotifs=10; distance=0.01
PROBE 90 100 100 100 75 100 S =500
SAM 50% 75 40* 50%* 45*  30* internal_weight=2; FIMs 10,20,30,40,50
497 MEME 7% 97 88 98 71 87 mod oops; nmotifs=10; maxw=10; maxsize=180,000
PROBE 86 99 100 100 97 87 S = 500 + 5000
SAM 38% ®7*  90* 100 85*%  69* internal_weight=2

Roman numerals indicate motifs and values in parenthesis indicate number of amino acids scored for in each motif.
Values in the columns indicate the percentage of sequences in which the motif was correctly identified. #The
parameter column indicates the changes which gave the best results: mod oops = motif distribution equal to one
occurrence per sequence; nmotifs = number of motifs to find; distance = Expectation Maximization convergence
criterion; maxw = maximum motif width to be detected; maxsize = maximum data set size in characters; S =
value at which to purge similar sequences; and FIMs = free insertion modules inserted at these positions; other
SAM parameters were changed according to (McClure and Raman 1995 [15]; McClure 1996 [13]).

b Percentages for PROBE are from 72 of the 497 sequences due to the maximum limit of the purge (S) value.
*Reported score is the highest percentage of correct motifs detected; lower percentages of motifs (not reported) are

detected as subsets not correctly aligned to one another.

For the 497 sequence test, this reduces the number of sequences reported in the results. MEME also
produces six different data sets, one for each motif, because individual motifs may easily be detected in
one subset of sequences, but not another. This further reduces the available sequences to be used for
alignment of the entire OSM. In MEME, the scores reported in Table 1 are the percentage of sequences
correctly identified out of 497. Compared to the 20 LILS test, MEME had lowered performance for all
six motifs. It should be noted that in order to get improved performance with MEME the user-specified
number of motifs to be detected must be greater than the actual number of motifs.

The PROBE program excludes sequences when they are over-represented in the data set. This purged
data set is then used to find the OSM. In this study, the maximum value for the purge parameter limits
the reported sequences from 497 to 72. This results in OSM detection among a single data set consisting
of the same 72 sequences. For PROBE, the scores are the percentages of the sequences correctly identified
out of 72. PROBE showed a greater percentage of detection for motif V and a slight decrease of detection
for the other five motifs.

Comparison of the results of the 20 versus 497 sequence test indicates that sequence similarity dis-
tribution influences program results of MEME but not PROBE. MEME scores higher with the unbiased
set of 20 sequences because when a specific motif is over-represented in the data set the program will
not recognize a divergent form of the motif. Thus, an entire sequence will be excluded because it is
under-represented. In contrast, PROBE purges a biased data set by reducing redundant sequences or
sequences that are too similar to each other. After it purges the sequences, the data is equally distributed
and produces high scores regardless of bias in the input data set. However, increasing the purge value to
include more similar sequences will reduce the scores slightly (Table 1).

3.2 Independent modeling of the MIRs

An earlier set of studies evaluated the effects of model surgery and OSM anchoring on de novo and sub-
class modeling of the LILS RT sequences (McClure and Kowalski 1999 [14]). For purposes of comparison
those data are reproduced here in Table 2. As described in 2.3.2.1 seven MIRs are present in the RT
sequences as defined by the identification of the OSM. Two different model types, de novo and sub-class,
are evaluated with and without surgery and motif anchoring of the MIR ends. All test models are run
twice with the initial priors as the amino acid frequency count of the training sequences and with the
20-component Dirichlet mixture. The best model is the one with the highest stability score (calculated
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Table 2: Results of modeling the entire sequence and the effects of OSM-anchoring and sub-classification

on HMM construction.

de novo, + surgery,
-OSM anchor
M M1 M2
aa freq 0.052 0.109 0.150
D 0.050 0.099 0.138

sub-class, + surgery,
- OSM anchor
M M1 M2
aa freq 0.052 0.108 0.150
D 0.049 0.097 0.133

sub-class, - surgery,
- OSM anchor
M M1 M2
aa freq 0.052 0.108 0.150
D 0.049 0.097 0.133

de novo, + surgery,
+ OSM anchor
M M1 M2
0.073 0.129 0.175
0.090 0.163 0.221

sub-class, + surgery,
+ OSM anchor
M M1 M2
0.030 0.064 0.094
0.030 0.062 0.092

sub-class, - surgery,
+ OSM anchor
M M1 M2
0.089 0.153 0.202
0.106 0.192 0.245

expert refined alignment
M M1
0.127 0.216

M2
0.274

from Equation 1) regardless of which initializations priors generated the model. The data indicate that,
in general, independent MIR modeling increases the alignment stability score when compared to entire
sequence modeling (Tables 2 and 3). Significant score increases are observed for models in which the
OSM has not been anchored. Although the models that include OSM anchoring also perform better,
these scores are effected to a lesser degree. The best model (S = 0.245) from the earlier studies, compares
favorably with two of the three best models of the new data presented here (S = 0.234 and 0.241). The
stability score for the best model in the new study is 0.260.

The lack of a significant difference in the scores for de novo models with and without OSM anchoring
is not due to lack of improvement in the alignment. The current implementation of our stability function
does not distinguish between isolated column matches and the OSM. Refinement of this function to
increase the column count for motifs is in process. As stated in the SAM manual, currently the feature
performing surgery between sub-class models representing amino acids is not implemented.

The de novo model, with surgery and without OSM anchoring performs better than the sub-class
model without anchoring or surgery due to the different ways sequences are weighted (Table 3). In the
de novo model all sequences are weighted to eliminate sampling bias. In the sub-class model the closely
related sequences carry more weight than more distant sequences. In contrast when OSM anchoring
constrains the model the sub-class models produce better alignments than all other strategies.

4 Discussion

The multiple alignment problem of distantly related sequences is not a new problem in bioinformatics.
A new approach to this problem is the use of HMMs that can incorporate a priori knowledge about
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Table 3: Results of independent MIR modeling and the effects of OSM-anchoring and sub-classification
on HMM.

de novo, + surgery,  de novo, + surgery,
-OSM anchor + OSM anchor
M M1 M2 M M1 M2
aa freq 0.066 0.122 0.158 0.103 0.176 0.226
D 0.103 0.189 0.241 0.105 0.181 0.234

sub-class, - surgery,  sub-class, - surgery,

- OSM anchor + OSM anchor
M M1 M2 M M1 M2
aa freq 0.093 0.166 0.207 0.114 0.196 0.252
D 0.093 0.164 0.205 0.117 0.202 0.260

expert refined alignment
M M1 M2
0.127 0.216 0.274

Definitions: aa freq = amino acid frequency count of training set as calculated by SAM and D is a 20-component
Dirichlet mixture provided in the SAM package. All other definitions and abbreviations are defined in the text.

the sequences. The first step in aligning such sequences is the identification of the OSM which defines
membership in a specific protein family. A previous study of global and local methods revealed that global
methods outperform local methods in identifying the OSM of four different protein families (McClure,
Vasi et al. 1994 [16]). Another comparative study of HMM approaches concluded that HMMs were as
good as or better at OSM detection than classical dynamic programming algorithms. Although HMMs
display improved performance, they are not 100% accurate (McClure and Raman 1995 [15]; McClure
1996 [13]).

We have analyzed a variety of new motif detection algorithms using the four benchmark protein
families, globins, kinase, aspartic acid protease, and the RH domain of the RDDP, (Hudak and McClure,
manuscript in preparation). The data presented here on the RT domain is an extension of this work
in the context of HMM generation. In the test of 20 LILS sequences both MEME and PROBE scores
indicate that these methods have a high accuracy in motif identification. The most conserved motifs, IV
> IT > VI > III, had a high occurrence of detection. Motif I consists of a single residue and motif V is
highly divergent (Fig. 1) and, therefore, they are the most difficult to correctly identify. Both MEME
and PROBE performed better than SAM.

Once the OSM is identified, the second stage of multiple alignment of distantly related sequences is
the alignment of the MIRs. In the data presented here the best approach for alignment of MIRs is the
anchoring of the motifs and sub-class modeling. Anchoring the ends of the MIRs provides information
on the OSM structure which acts as a constraint on the modeling. Sub-class modeling increases the
retrieval of information within the MIR because similar sequences influence the model more than distant
sequences.

The concept of distinguishing between the motifs common to a set of sequences and the intervening
regions in multiple alignment strategies is not new (Martinez 1988 [10]). We have applied this concept
in the context of HMM generation. In the course of the studies presented here, we have discovered that
entire sequence HMM modeling may not be the best method for motif identification. We recommend the
use of either MEME, an HMM approach, or PROBE, a combination of Gibbs sampling and a genetic
algorithm, to initially find motifs. This information can then be incorporated a priori into an HMM
for entire sequence modeling. It is clear from this analysis that an automated HMM approach that
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distinguishes between OSMs and MIRs would provide a better approximation of alignments that have
been refined by human experts.
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