A System for Identifying Genetic Networks from Gene
Expression Patterns Produced by Gene Disruptions and

Overexpressions
Tatsuya Akutsu ! Satoru Kuhara 2
takutsu@ims.u-tokyo.ac. jp kuhara@grt.kyushu-u.ac. jp
Osamu Maruyama ! Satoru Miyano !

maruyama@ims.u-tokyo.ac. jp miyano@ims.u-tokyo.ac.jp

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
Graduate School of Genetic Resources Technology, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Abstract

A hot research topic in genomics is to analyze the interactions between genes by systematic
gene disruptions and gene overexpressions. Based on a boolean network model without time delay,
we have been investigating efficient strategies for identifying a genetic network by multiple gene
disruptions and overexpressions. This paper first shows the relationship between our boolean
network model without time delay and the standard synchronous boolean network model. Then we
present a simulator of boolean networks without time delay for multiple gene disruptions and gene
overexpressions, which includes a genetic network identifier with a graphic interface that generates
instructions for experiments of gene disruptions and overexpressions.

1 Introduction

S. cerevisiae is the first eukaryotic organism whose complete genome was determined [14]. Its whole
DNA sequences have been open to public since 1996. Then the complete genomes of E. coli [5] and B.
subtilis [11] were determined in 1997. The sequencing of a multicellular organism C. elegans will finish
in 1998 with DNA sequences of total size 100M bp. Along with these advances of sequencing projects,
ambitious researches are heating up for systematic analysis of gene functions and genetic networks by
using large-scale gene expression patterns produced with DNA microarrays and DNA chips [6].

Aiming at systematic analysis of gene interactions in S. cerevisiae, our research group has installed
a large-scale experimental method that can generate gene expression patterns of S. cerevisiae by
multiple gene disruptions and overexpressions. With this method, we are now on the schedule to
determine a rough figure of the genetic network of S. cerevisiae. A task crucial to this aim is to
develop strategies of experiments with which we can obtain enough gene expression pattern data to
identify the underlying network. For this purpose, we modeled a genetic network as a boolean network
without time delay and defined a strategy as an algorithmic process each of whose step consists of an
experiment of multiple gene disruptions and overexpressions.

Fig. 1 shows an artificial example of a genetic network in the boolean network model without time
delay, where each node corresponds to a gene and each gene takes one of two states: 0 (not-express)
or 1 (express). The network in Fig. 1 is interpreted in the following manner in this model: We assume
that A and C express under no condition. Arrows with & and © mean activation and inactivation,
respectively. Gene B expresses if gene A expresses. Gene F (resp. G) expresses if gene E (resp. F) does
not express. Gene D expresses if neither B nor C expresses. Gene E expresses if both B and G express.
Table 1 shows four cases of gene expression patterns for normal, disruption of A, overexpression of F,

151

®——G

@=
©O—7—0® E—7—

Figure 1: Boolean model of a genetic network.

and disruption of A and C. Note that, in order to activate D, multiple gene disruptions are required.
Thus, gene disruption (overexpression) of single gene is not enough for identifying the network.

Our aim is to identify genetic networks as in Fig. 1 from experimental results of gene disruptions
and overexpressions as in Table 1. Moreover, we are interested in efficient strategies of experiments.
That is, we are interested in minimizing the number of experiments required to identify networks.

Computational learning of boolean functions has been extensively studied, e.g., [3, 4]. However,
they are not not directly applicable, and therefore, more appropriate approaches are required for our
aim. In [1], we investigated strategies of experiments for this boolean network model and proved
some upper and lower bounds on the number of experiments required to determine networks. This
paper continues the work of [1] from a viewpoint of practice. The model we use in this paper is a
boolean network model without time delay where no time clock is assumed for the values of nodes
while the synchronous boolean network model does. We employed this model in our research since
the synchronous model is rather idealistic and does not fit our experimental data very well.

Table 1: Gene expressions by disruption and overexpression.

Gene Expression
Gene Name A|(B|C|D|E|F |G
Normal Condition 1711101]0]1
Disruption of A ojo|1j0|0|1|O
Overexpression of F 1/1{1/0]0]1]0
Disruption of Aand C | O | O | O [1 | O | 1] O

The contributions of this paper are as follows: First, we consider the relationship between our
boolean network model without time delay and the synchronous boolean network model discussed in
the literature [9, 13, 16, 17, 20]. In [13], some arguments are provided for the complexity of algorithmic
procedures to determine the synchronous boolean networks. By establishing a relationship to the
synchronous model, we derive by using the result in [1] lower and upper bounds on the number
of experiments to determine synchronous boolean networks from gene expression patterns. For our
system, an efficient method for simulating boolean networks without time delay plays an important
role. Our second contribution is a simulator of boolean networks without time delay for multiple gene
disruptions and gene overexpressions. Since the global state of a network is not necessarily stable,
we need to enumerate global states of a network to analyze its behavior. An efficient enumeration
technique is implemented in this simulator by using feedback vertex sets. This simulator is also
useful for developing practical strategies which employ some already known genetic network models as
background knowledge. The main contribution is a genetic network identifier with a graphic interface.
This identifier generates instructions of experiments of gene disruptions and overexpressions. It can
also be used to analyze a network by working interactively with the simulator which returns global
states corresponding to the experiments. The strategy developed in [1] is a key to the development
of this identifier, and the graphic interface helps viewing the network structure and its state. Some

152

computational experiments by this system are also shown for real genetic networks.

2 Boolean Network Model without Time Delay

2.1 Model and gene disruptions and overexpressions

We first briefly review the boolean network model without time delay by following [1]. Readers not
familiar with mathematical notation may skip mathematical descriptions and may refer only figures. A
genetic network G = (V, F) is a boolean network with the set V' of nodes and the set F' = {f, | v € V'}
of boolean functions assigned to the nodes, where this network may have cycles but does not have
self-loops. We confuse a genetic network G = (V, F') with its underlying directed graph G(V, E). We
call a node of G a gene. The boolean function assigned to the node represents the condition for the
gene to express and is a gene requlation rule. We denote a boolean function assigned to a node v by
fo(ug, ..., ux) where a state of v is affected by states of uy,...,u (i-e., ui,...,uy are input for v) (see
Fig. 2). A node v with no input has a constant value (1 or 0). Unless otherwise stated, we assume
without loss of generality that the value of a node with no input is 1. We say that the state of a gene
v is active (inactive) if the value of v is 1 (0). If the value f,(u1,...,u;) of node v is determined by
the formula I(uy) A l(ug) A -+ Al(ug) ([(ur) VI(uz) V- Vi(ug)), we call v an AND node (OR node),
where [(u;) is either u; or —u; (NOT w;). We call an edge (u;,v) an activation edge (inactivation edge)
if I(u;) is a positive literal (negative literal).

For a gene v, gene disruption of v enforces v inactive and gene overexpression of v enforces v active.
Let x1,...,2p, y1,...,y4 be mutually distinct genes of G. An experiment with gene overexpressions
x1,...,2p and gene disruptions yi,...,y, is denoted by e = (x1,...,2p, 7Wi1,...,7y,). The cost of e
is defined by the number p + q.

@ (b) <u,—u,>
I -0
W W W W W
o\ |© /@ N |© /e

AND AND

O N

Figure 2: Example of a boolean function and an experiment. (a) Boolean function u; A —ug A ug (u;
and (not ug) and ug) is assigned to v, where each node corresponds to a gene and this boolean function
corresponds to a gene regulation rule for v. In this case, v is called an AND node and the value (i.e.,
state) of v is 1 if and only if the values of uj, us and ug are 1,0,1 respectively. (b) Experiment
(u1,-wus). In this case, the values of u; and ugz are enforced to be 1 and 0 respectively. And then, the
value of v becomes 0 because the value of us is 0. Note that under an experiment (u;,us, ~usa), the
value of v becomes 1.

A global state of G is a mapping 1 : V. — {0,1}. Each global state must satisfy ¢(z;) = 1
and 9¥(y;) = 0 under an experiment (x1,...,Zp, W1,...,W,). The global state of the genes need
not be consistent with the gene regulation rules. We say that a global state ¥ of G is stable under
an experiment (x1,...,Tp, Wi,...,y,) if it is consistent with all gene regulation rules except those
assigned to nodes x1,...,Tp, y1,...,yq. Otherwise, it is called unstable. We say that a genetic network
G is stable under an experiment e if there is a global state of G which is stable under e. When no
experiment is made on GG, we simply remove “under e” from the terminology.

Note that a stable global state is not necessarily unique (Fig. 3). Moreover there may not exist
any stable global state (Fig. 3). As a result of an experiment, however, we assume that all the states
of the genes can be observed. Hence we should define an observed global state.

153

@ © (b)

® © o
o e &, @
'\@/. AND! _

Figure 3: Global state and stable state. There are two stable global states ([A = 0, B = 0] and
[A=1, B =1]) for Network (a) because A =1 if and only if B = 1. There is one stable global state
[A=0, B=1, C = 1] for Network (b) because C' = 1 from the assumption and A =0 and B = 1 are
counsistent with regulation rules. However, under experiment e = (—C) (i.e., C' is disrupted), there is
no stable global state for Network (b) because B must be 1 if A =0 and A must be 1 if B = 1.

Before defining an observed global state, we define the set I of invariant nodes under an experiment
e=(x1,...,Zp,Y1,-.., Yq), along with a mapping ¢ from I to {0,1} (see Fig. 4). Invariant nodes
and ¢ are defined inductively in the following way:

1. If v appears in e or has no incoming edge (i.e., indegree = 0), v is an invariant node. Moreover,

¢(x;) =1 for z1,...,xp, ¢(y;) =0 for yi, ...,y and ¢(v) = f, for the other nodes v.

2. Let U be the set of incoming nodes to v and let U’ = {uq,...,up} C U be the current set of
invariant nodes in U, where ¢ is defined for any node in U’. If f, with inputs ¢(uy),...,d(up) is
invariant for any states of nodes in U — U’ then v is invariant and we define ¢(v) by the value
of f,.

An observed global state ¢ under an experiment e is an arbitrary global state such that ¥ (v) = ¢(v)
for all v € I. A native global state of G is an observed global state when no experiment is made on
G (i.e., p = ¢ = 0). Note that if v is not an invariant node under the experiment then the state of v
may not be determined uniquely.

/®—®

Figure 4: A native global state for this network is [A =1,B=1,C =1,D=0,F=0,F =0,G =
1, H = 0], where all nodes are invariant nodes because the values of A and B are 1 from the assumption
and then the values of the other nodes are determined uniquely. Under an experiment e = (=C') (i.e., C'
is disrupted), E, F, G, H become non-invariant nodes because their values are not determined uniquely
from the same reason as in Fig. 3(b), and thus any states for £, F,G, H can be observed in this case.
Note that we omit @ symbols for activation edges.

2.2 Upper and lower bounds of experiments for network identification

We have studied in [1] the problems and algorithms for identifying genetic networks from gene ex-
pression data in various situations. The indegree of a gene is the number of genes directly affecting
it in a genetic network. The indegree of most genes may be only one or two except some special
genes. Therefore, it has an important sense in practice to cope with genetic networks with a small

154

indegree constraint when the genes are restricted to a specific region. We have proved upper and
lower bounds of experiments required for identifying a genetic network with n genes in regard to the
indegree constraint and acyclicity. The results are summarized in Table 2.

Table 2: Summary of our previous results on identification, where n denotes the number of genes and
D denotes the maximum indegree.

Number of Experiments
Constraints Lower Bounds Upper Bounds
No constraint Q20072 Oomn2m1
Indegree < D Q(n®) O(n??)
Indegree < D & AND nodes (OR nodes) only | Q(n”) o(nP*th)
Indegree < D & Acyclic Q(n®) o(n?)
Indegree < 2 & no inactivation edges Q(n?) O(n?)

Note that we assume that the cost of an experiment is bounded by a constant except the first
case (i.e., the case with no constraint). This assumption is natural because many changes of genes
(i.e., high cost experiments) may cause the death of organisms. These results in Table 2 are rather
discouraging since the lower bounds are too high for experiments even for n ~ 6000 and D = 2.
However, these lower bounds hold for the worst case. Therefore, more practical (heuristic) strategies
should be developed that require much fewer number of experiments for most networks. Moreover,
we should make use of known genetic networks as knowledge and reduce the number of experiments
significantly.

3 Relationship with Synchronous Boolean Network Model

In the synchronous boolean network model discussed in the literature [9, 13, 16, 17, 20|, the state
of a node changes synchronously from time to time. Let 1:(v) denotes a state of node v at time t¢.
Then ;11(v) is determined by V11 (v) = fu(¥r(ur), ..., ¥ (ug)), where ug, ..., uj are input nodes to
v. This section relates the boolean network model without time delay and the synchronous boolean
network model and show that our model is useful to analyze the synchronous boolean network model.

3.1 Stability and attractor

In the synchronous boolean network model, a consecutive sequence of global states ¥, ¥¢1, =+, Viqp
is called an attractor (or, an attractor cycle) with period p if 1 (v) = ¥y4p(v) for all genes v € V. An
attractor with period 1 is called a point attractor.

In Section 2 we defined a stable global state for the boolean network model without time delay.
The following relationship holds for a stable global state and an attractor.

Proposition 1. v is a stable global state in a boolean network without time delay if and only if v
is a point attractor in the synchronous boolean model of the same network.

Therefore, finding a point attractor is equivalent to finding a stable global state. Since finding a stable
global state is known to be NP-hard [1], finding a point attractor is also NP-hard, from which the
following corollary follows.

Corollary 1. Finding an attractor with the shortest period is NP-hard.
This corollary suggests that finding short attractors may take very long CPU time.

155

3.2 Synchronous boolean network identification

The upper and lower bound results reviewed in Section 2 are proved for the boolean network model
without time delay [1]. A simple transformation from the synchronous boolean network model to the
boolean network model without time delay allows us to obtain upper and lower bound results for the
synchronous boolean network model.

Let uy, ..., u; be input nodes to v in a synchronous network G(V, F'), where self-loops are allowed.
For each node v, we construct two nodes v’ and v'*! and we construct an edge from u! to v'™!. Let
the constructed network (without time delay) be G'(V', F') (see Fig. 5). It is easy to see that the
identification strategy for G'(V’, F’) can be directly applied to the identification of G(V, F'). Therefore,
since G'(V', F') is always acyclic, we can obtain an identification strategy for the synchronous boolean
network model, which requires O(n”) experiments. Moreover, Q(n”) lower bound also holds for this
model.

Proposition 2. Synchronous boolean networks of maximum indegree D can be identified by ©(n”)
experiments each of whose cost is bounded by some constant.

G(V,F) @ @ G(V' F)

—

® @ ©

Figure 5: Transformation from a synchronous boolean network G(V, F') to a boolean network without
time delay G'(V',F’). Due to this transformation, the results on the number of experiments for
identifying boolean networks without time delay can be applied to synchronous boolean networks.

4 Simulator for Gene Disruptions and Overexpressions

A simulator is developed for analyzing the behavior of a genetic network under multiple gene dis-
ruptions and overexpressions. This system is not only necessary for the genetic network identifier
system, which shall be described in Section 5, but also useful for developing practical strategies for
experiments.

4.1 Search for an observed global state

As a basic function, the simulator is required to compute the following problem:
Input: a boolean network G(V, F') and an experiment e
Output: an observed global state 1) under e.

It is easy to compute an observed global state under e because the definition of an observed global
state in Section 2 gives a straightforward algorithm running in O(n?) time. That is, we compute the
states of all invariant nodes and we assign arbitrary states to the nodes other than the invariant nodes.
This is realized by a rather naive implementation technique.

For example, consider the network in Fig. 4. Under a native state, the states of nodes are
determined in the following order: A=1— B=1—- C=1—- D=0—- E=0— F=0
— G =1— H = 0. Under an experiment e = (—C), the states of nodes are determined in the
following order: A=1— B=1— C =0— D =1 and arbitrary states are assigned for £, F,G, H.

156

4.2 Enumerating all stable global states

It is an important task for the analysis of the network to test whether or not there exists a stable global
state [16, 17]. Unfortunately, the problem of finding a stable global state is NP-hard [1]. Moreover,
as to the number of stable global states, we have the following result (the proof is omitted; see [19]
for the definition of #P-completeness):

Proposition 3. The problem of counting the number of stable global states of a genetic network is
#P-complete.

Here we developed a practical method for finding a stable global state. This method is modified for
enumerating all stable global states and is implemented in the simulator. Note that similar techniques
have been already applied to the analysis of electronic circuits and VLSIs [12].

First note that if we examine all possible global states (i.e., 2" global states), we can easily find a
stable global state, if any. However, examining 2" global states is time consuming even for n ~ 20.

Therefore, we need to reduce the number of global states to be examined. Next note that if the
network is acyclic then all nodes are invariant nodes and thus a stable global state can be found by
using the method described in Section 4.1. This fact leads to the following simple algorithm (Algorithm
A, see Fig. 6):

STEP 1: Find a minimum set of nodes U C V such that removal of incoming edges into
U makes the network acyclic,

STEP 2: For each assignment of states to U, determine a global state using the method
in Section 4.1 and check whether or not this global state is stable (i.e, consistent
with all regulation rules).

SONNEZONE

c---Ey-----

Figure 6: Finding a stable global state. In step 1, all incoming edges into U = {C, G} are removed and
thus the network becomes acyclic. In step 2, all assignments to U ([C' = 0,G = 0], [C =0,G = 1],
[C=1,G=0],[C=1,G=1]) are examined.

Since only 2!V! global states are examined and the size of such U is expected to be small (compared
with the size of V'), this algorithm is expected to be practically efficient. However, the problem of
finding such a set U is known as the FEEDBACK VERTEX SET problem and is known to be NP-hard
[7]. Thus, we use the following simple greedy algorithm (Algorithm B) for finding a (not necessarily
minimum) set U.

(i) Let U :={},

(ii) Compute the set I of invariant nodes of the network obtained by removing all incoming
edges into U,

(iii) If V — U — I is empty, output U and stop,

(iv) Select an arbitrary node v € V. — U — I and let U := U U {v}, and goto (ii).

Although nothing is theoretically proved, this greedy algorithm is expected to work well for most
practical networks.

Note that the above algorithm (A+B) can be used both for finding a stable global state and
for enumerating all stable global states. Moreover, the above algorithm can also be modified for

157

enumerating attractors of a short period (i.e., attractors with period such that |U| x period < n) in
the synchronous boolean network model, where we omit details here.

5 System Overview

We have developed a genetic network analyzer on SUN ULTRA workstation using C language. This
analyzer consists of three parts: Simulator, Identifier, and Graphic Interface (Fig. 7).

Graphic
Interface

experiment e
(gene disruptions and

Simulator __ geneoverexpressions) | dentifier
Input File « finding global N (Identification
(Description of | == > states strategy)
anetwork) e enumerating
stable states »
global state under e

Figure 7: Overview of genetic network analyzer.

Simulator computes a global state and/or enumerates (or finds) stable global states of a given
boolean network under an experiment specified by user or Identifier. Details of a boolean network
is described in a flat text file (network description file), which consists of network topology, boolean
functions assigned to nodes, and xy-coordinates of nodes. No graph drawing algorithm is not yet
implemented and thus users have to specify xy-coordinates of nodes for drawing networks on windows.
Currently, a form of a boolean function is limited to AND of literals or OR of literals.

Although Simulator knows the network topology and associated boolean functions, Identifier
knows neither the network topology nor boolean functions, and only knows the number of nodes (n) in
the network. When Identifier is used for identifying an unknown network by gene disruptions and
overexpression, it generates a series of experiments in cooperation with the gene expression pattern
data produced by the experiments. Identifier can be also used for analyzing a network by generating
experiments e iteratively and by asking Simulator to return a global state under e. Our result in [1]
is implemented for realizing Identifier. Currently, a strategy for the case of networks consisting of
AND and/or OR nodes of maximum indegree 2, which examines O(n?) experiments (see Table 2), is
implemented. Although Identifier can handle a case that the network contains a node of indegree
> 2, Identifier may miss a correct boolean function for such a node. However, even for such a case,
Identifier can always find a correct boolean function for each node of indegree < 2.

Graphic Interface was built on X11 Window System. Using this interface, users can view the
network topology, associated boolean functions and states of nodes. Moreover, using the mouse, users
can input commands (simulation, enumeration, identification, ---) and can specify an experiment.

6 Simulation Results of Identification

In this section, we show some results of preliminary computational experiments on our strategy for
identifying genetic networks. Prior to biological experiments of gene disruptions and overexpressions,

158

we used networks described in the literature, and we examined how many experiments were required
in order to identify a network, using the genetic network analyzer.

First, we used a network shown in Fig. 8 (a), which was proposed in [16] as a model of cis
regulation site. In this case, the network was identified correctly by 12 experiments.

Next, we used a model of Head GAP Genes Network (Fig. 8 (b)) of Drosophila Segmentation
described in [15], and a subnetwork relating with formation of dauer larva of C. elegans (Fig. 8
(c)) [10]. In the former case, the network was identified correctly by 2288 experiments except boolean
functions assigned to two nodes (‘btd’ and ‘otd’) with indegree > 2. Since we only implemented an
identification strategy for networks with maximum indegree 2, boolean functions assigned to nodes
with indegree > 2 could not be identified correctly. In the latter case, the network was identified
correctly by 1760 experiments except a boolean function assigned to one node (‘daf-12’) with indegree
> 2.

@

@Bcca(@/@@

Figure 8: Genetic network models used in computational experiments: (a) simplified model of cis
regulation site, (b) Head Gap genes network of Drosophila segmentation, (c) subnetwork relating with
formation of dauer larva of C. elegans.

%

From the above results, it seems that our current strategy is not yet sufficient from a practical
viewpoint. Although we proved rather high lower bounds, these lower bounds hold only for the worst
cases. Therefore, the above results suggest that we should develop practical heuristic strategies. We
believe that our analyzer will help such a development.

7 Conclusions

By employing our results on the strategies for genetic network identification [1], we have developed a
prototype system that identifies genetic networks by interactively generating instructions for experi-
ments of gene disruptions and overexpressions. We have also developed a simulator for networks that
is combined with the identifier for analyzing the behavior of networks. Computational experiments
and theoretical analysis show that the number of experiments required for identifying the networks is
still too large.

On the other hand, we recently showed that, if we can observe time series of global states (under
the synchronous boolean network model) in which states of many genes change simultaneously, we can
identify the network from much fewer number of expression patterns (©(logn) patterns for bounded
indegree case) [2]. From this and the results of this paper, we can see that the number of experiments
and/or expression patterns depends on which model we consider. Thus, it is important future work
to develop a genetic network model suited for real genetic networks and technologies for biological
experiments. The developed simulator will be useful for such a development.

159

Acknowledgments

This work was supported in part by a Grant-in-Aid “Genome Science” for Scientific Research on
Priority Areas from The Ministry of Education, Science, Sports and Culture of Japan.

References

1]

[18]

[19]

[20]

Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S., Identification of Gene Regulatory
Networks by Strategic Gene Disruptions and Gene Overexpressions, Proc. Ninth ACM-SIAM
Symp. Discrete Algorithms (SODA’98), 695-702, 1998.

Akutsu, T., Miyano, S., and Kuhara, S., Identification of genetic networks from a small number
of gene expression patterns under the boolean network model, to appear in Pacific Symposium
on Biocomputing’99 (PSB’99).

Angluin, D., Queries and concept learning, Machine Learning, 2:319-342, 1992.

Bioch, J.C. and Ibaraki, T., Complexity of identification and dualization of positive boolean

functions, Information and Computation, 123:50-63, 1995.
Blattner, F.R. et al., The complete genome sequence of Escherichia coli K-12, Science, 277:1453—

1474, 1997.
DeRisi, J.L., Iyer, V.R., and Brown, P.O., Exploring the metabolic and genetic control of gene

expression on a genomic scale, Science, 278:680-686, 1997.
Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, NY, 1979.
http://genome-www.stanford.edu/Saccharomyces or

http://speedy.mips.biochem.mpg.de/mips/yeast
Kauffman, S.A., The Origins of Order, Self-Organization and Selection in FEvolution, Oxford

University Press, 1993.
Kohara, Y. (ed.), C. elegans. Symphony of 1000 cells (in Japanese), Kyoritsu Shuppan, Tokyo,

1997.
Kunst, F. et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis,

Nature, 390:249-256, 1997.
Lathrop, R.H., Hall, R.J., and Kirk, R.S., Functional abstraction from structure in VLSI simu-

lation models, Proc. 24th ACM/IEEE Design Automation Conference, 822828, 1987.
Liang, S., Fuhrman, S., and Somogyi, R., REVEAL, a general reverse engineering algorithm for

inference of genetic network architectures, Proc. Pacific Symposium on Biocomputing’98, 1829,

1998.
Mewes, H.-W., Albermann, K., Bahr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K.,

Kleine, K., Maierl, A., Oliver, S.G., Pfeiffer, F., and Zollner, A., Overview of the yeast genome,

Nature, 387(6632 Suppl.):7—65, 1995.
Samsonova, M.G., Spirov, A.V., and Serov, V.N., The GeNet database, Poster Abstracts for

Pacific Symposium on Biocomputing’98, 110, 1998.
Somogyi, R. and Sniegoski, C.A., Modeling the complexity of genetic networks: Understanding

multigene and pleiotropic regulation, Complezity, 1:45-63, 1996.
Thomas, R., Thieffry, D., and Kauffman, M., Dynamical behaviour of biological regulatory net-

works -1. Biological role of feedback loops and practical use of the concept of the loop-characteristic

state, Bulletin of Mathematical Biology, 57:247-276, 1995.
Thomas, R., Thieffry, D., and Kauffman, M., Dynamical behaviour of biological regulatory net-

works -II. Immunity control in bacteriophage lambda, Bulletin of Mathematical Biology, 57:277—

297, 1995.
Valiant, L.G., The complexity of computing the permanent, Theoretical Computer Science,

8:189-201, 1979.
Wauensche, A., Genomic regulation modeled as a network with basins of attraction, Proc. Pacific

Symposium on Biocomputing’98, 89-102, 1998.

160

