Improvement of the A* Algorithm for Multiple Sequence
Alignment

Hirotada Kobayashi Hiroshi Imai

hirotada@is.s.u-tokyo.ac. jp imai@is.s.u-tokyo.ac.jp

Department of Information Science, Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

The alignment problem of DNA or protein sequences is very applicable and important in various
fields of molecular biology. This problem can be reduced to the shortest path problem and Ikeda and
Imai [4] showed that the A* algorithm works efficiently with the estimator utilizing all 2-dimensional
sub-alignments.

In this paper we present new powerful estimators utilizing & > 3 dimensional sub-alignments,
and propose a new bounding technique using Va, a set of vertices in the paths whose lengths are
at most A longer than the shortest path. We also extend our algorithm to a recursive-estimate
version. These algorithms become more efficient when the number of sequences increase, or the
similarity among sequences is lower.

1 Introduction

Multiple sequence alignment is a problem to find the alignment of multiple sequences with the highest
score due to a given scoring criterion between characters. It is used for extracting biologically impor-
tant commonalities from a set of DNA or protein sequences, and is applicable to various important
fields such as the prediction of three dimensional structures of proteins or the inference of phylogenetic
tree in molecular biology.

This problem can be solved by finding the shortest path on some directed acyclic mesh-shaped
graph, and the famous approach to this problem is Dynamic Programming (DP) . However, both time
and space complexity of the DP approach are O({") when the number of sequences is n and the length
of each sequence is O(l), thus it is effective only for the cases of small dimension, two or three, and
becomes impractical for higher dimensional case, say the dimension of five or six.

The A* algorithm is a well-known heuristic search method in Artificial Intelligence, and finds the
shortest path quite more efficiently than DP or the Dijkstra method by utilizing the heuristic estimate
for the shortest path length. Spouge [8] introduced the concept of the A* algorithm to the multiple
sequence alignment problem in order to bound the search space of DP. Tkeda and Imai [4] suggested
using the A* algorithm directly to the multiple sequence alignment problem, and showed that this
direct approach works very well with the estimator utilizing all 2-dimensional sub-alignments.

This paper further improves ITkeda and Imai’s results by introducing new powerful estimators
utilizing high (kK > 3) dimensional sub-alignments. In order to use the estimators utilizing high
(k > 3) dimensional sub-alignments, more efficient search-space-bounding techniques are required.
Therefore we also proposes a new bounding technique using Va, a set of vertices in the paths whose

120

lengths are at most A longer than the shortest path. We also extend our algorithm to a recursive-
estimate version. These algorithms become more efficient when the number of sequences increases, or
the similarity among sequences is lower.

2 Multiple Sequence Alignment and the Shortest Path Problem

2.1 Multiple Sequence Alignment Problem

Here we formally define the multiple sequence alignment problem.
Given a finite alphabet set ¥ and a family S = (s1,---, ;) of n sequences:

8; = 8182+ si; (1 << n)
where each sequence entry s;; € 3, an alignment of S is a matrix A = (a;;)1<i<n,1<j<i Where
(i) aij € 2U{—}, with “=” denoting the gap letters,

(ii) each row a; = a;1 - a;(1 < i < n) of A is exactly the corresponding sequence s; if we eliminate
all gap letters,

(iii) A has no column which only contains gaps.

We are also given a score function

¢: (2U{-})’
defined according to matching scores of each two characters in ¥ and a gap penalty (Note that
¢(—,—) =0). For each pair of rows a,,a, in A, define the pairs score

l
aua av Z auga av]

Then the sum of pairs score for an alignment A is defined by

P(A) = Z p(ay, ay),

1<u<v<n

and the multiple sequence alignment problem is a problem to find the alignment A,y which maximizes
the sum of pairs score.

In this definition of the problem, the gap penalty is linear to sum of the length of gap sequences.
This kind of gap penalties are called the linear gap penalties. If there is some starting gap penalty
which is charged for the starting of each gap sequence, it is called the affine gap penalty. In this paper,
we deal with the linear gap penalty.

2.2 Reduction to the Shortest Path Problem

Multiple sequence alignment problem can be solved by finding the shortest path on some directed
acyclic mesh-shaped graph. Let us consider a directed acyclic graph G = (V, E) such that

V = {(xlaxn)|xz:07177lz}

E = | {wvte)|vvtecV,e#0}.
ec{0,1}"
A path from the vertex s = (0,---,0) to the vertex t = (ly,---,l,) corresponds to an alignment of

sequernces.

121

Figure 1: The graph for the alignment of two sequences ATGC and ACT.

For instance, in two dimensional case, the graph G is constructed as Fig. 1. Each row or column in
this graph corresponds to each character of first or second sequences, respectively. Each diagonal edge
represents a match between corresponding two characters and has its length of corresponding matching
cost, while each horizontal or vertical edge represents an insertion of a gap and the gap penalty is
assigned to its length. When the matching scores represent the similarity between characters, the
matching costs are obtained by reversing signs of the matching scores.

For more than two dimensional case, a score of an alignment is a sum of all pairs scores. Therefore
each edge length in G is defined as a sum of all corresponding edge lengths in the graphs for pairwise

alignments. Let Gﬁ),pz = (p(f,})z,E}ﬁ?pz) denote the graph for the pairwise alignment of s, ,s,,, and

v}(,?pz € Vp(f %)2 denote the corresponding vertex to v € V. Then the length of edge (u,v) € E is defined
as
u,v) = Z l(“g),pz’vg),pz>’
1<p1<p2<n

where (U1(721),p27 Uz(f),pz) denotes the length of the edge (Ug),pw Uz(g),pz) in the graph Gg),pz (if u1(721),p2 = UI()%),pgy

l(ug) D2 v}(,?),pz) = 0). Therefore finding the optimal alignment is equivalent to finding the shortest path

from the vertex s = (0,---,0) to the vertex t = (I1,---,l,) in the graph G.

3 The A* Algorithm and Multiple Sequence Alignment Problem

3.1 The A* Algorithm

The A algorithm finds the shortest path from s to ¢ efficiently when all edge lengths are non-negative.
It utilizes a heuristic estimate ﬁ(v) for the shortest path length from each vertex v € V to t. Let
h(v) denote the actual shortest path length from v to t. If the estimate h(v) suffices the condition
fb(v) < h(v) for all vertices v € V, the algorithm exactly returns the optimal shortest path from s to
t. In such a case we call the algorithm the A* algorithm. An outline of the A* algorithm is described

as follows [3]:
Algorithm A*

1. Let g(v) denote a temporary estimate for the shortest path length from s to each vertex v, and
initially g(v) := 400 (for all v # s), g(s) :== 0.
Let W be a vertex set which is initially ().

~

g(v) + h(v).

2. Find a vertex v € V\W which has the minimum value of f(v)
Add the vertex v to W. If v =t, the algorithm stops.

122

3. Ezpand the vertex v. That is, for all the vertices v' that (v,v') € E, if g(v) + l(v,0") < g(v'),
renew the value §(v') := §(v) + l(v,v") and replace the path from s to v' with the shortest path
from s to v added with the edge (v,v"). If v € W, remove v from W.

4. Go to step 2.

In the A* algorithm, unlike Dijkstra method, the shortest path from s may not appear first for
each expanded vertex v, and a shorter path from s to v may be found in the future search. It makes
the algorithm rather inefficient. This disadvantage can be avoided if we use the estimator h with
appropriate property.

Definition 1 The estimator h is called dual feasible if and only z'ffb satisfies the following constraint:

Y(u,v) € E 1(u,v) 4+ h(v) > h(u). (1)

If the estimator & is dual feasible, the A* algorithm never expands the same vertices twice, and searches
the shortest path efficiently.

In the A* algorithm, an upper bound & for the actual shortest path length x from s to t can be
utilized. We can ignore such vertices v in the search that f(v) = §(v) + h(v) > &.

Finally we explain how to modify the length of edges in GG in order to exclude edges of negative
length. The following theorem is useful [4].

Theorem 2 Let h be a dual feasible estimator. The Dijkstra method on a graph in which l(u,v) is
replaced by U'(u,v) as follows is equivalent to the A* algorithm on the original graph:

U'(u,v) = 1(u,v) + h(v) — h(u).

In this modification, each new edge length is non-negative if the estimator / is dual feasible. Therefore
with the dual feasible estimator, the Dijkstra method on the modified graph works well even if the
original graph has edges of negative length.

3.2 The A* Algorithm and Multiple Sequence Alignment Problem

In the following part of this paper, we assume that n > 3 where n is the number of sequences in the
alignment problem.

Let us consider the alignment problem of n sequences s1,---,s,. Let G = (V, E) be the corre-
sponding n-dimensional mesh-shaped graph.
For every k sequences sp,,---,8p, chosen from si,---,s,, we can consider the corresponding k-

dimensional mesh-shaped subgraph Ggf),...,pk. Let ng’f?...ypk (v) denote the shortest path length from

vgf?...ypk to tgf),...,pk in Ggf),...,pk, where Ugf,---,pkvtg?,m,pk € ngf),m,pk are the corresponding vertices to
v,t € G, respectively.

Ikeda and Imai [4] showed that the following estimator is very useful for the alignment problem.

Theorem 3 (Ikeda and Imai) The estimator flpair defined as follows is dual feasible:

hpaie(v) = 32 Lyl (v):

1<p1<p2<n
Proof: For any edge (u,v) € E,
U,0) +hpair(®) = D0 (U vf) + L (0) = D L, (0) = hipair(w).
1<pi1<p2<n 1<p1<p2<n

a

Ikeda and Imai [4] also noted that, with the estimator fbpair, the A* algorithm utilizing an upper
bound for the shortest path length from s to ¢ is equivalent to using the branch-and-bound techniques
proposed by Spouge [8] or the return-cost pruning implemented in MSA program by Gupta et al. [2].

123

4 New Estimators Utilizing High Dimensional Sub-alignments

In another point of view, the estimator & in the A* algorithm gives a lower bound for the actual
path length h. The tighter bound the estimator gives, the more efficiently the algorithm searches the
shortest path.

The estimator hpair only utilizes the information of every two dimensional sub-alignment. If we
use the information of £ > 3 dimensional sub-alignments, we can obtain more powerful estimators.

First, we consider the natural extension of hpai, by utilizing the information of all A-dimensional
sub-alignments.

Theorem 4 The estimator ?lall_k defined as follows is dual feasible:

S Ly ().

—2
(2—2) 1<p1<-<prp<n

N 1
hajk(v) =

Proof: For any edge (u,v) € E,

o)+ = g ((ij)- TR IR L;S‘?,.--,p,c(v))

1<i<j<n 1<p1 < <pp<n

k
= > (> l(uﬁ?},vf})+L§a3.--,pk<v>>

k—2/ 1<p1<-+-<px<n \i,JEP1,,Pk,i<J

Y]

k A~
> L. (1) = hran g (w).

n—2
(k72) 1<p1<--<pr<n

The estimator huy, satisfies the following property.
Proposition 5 ﬁpair(v) < ilau_k(v) < h(v) for allveV.

Proof: For any vertex v € V, Lgf?...,pk (v) satisfies that

k
Lél?"':l’k (v) > Z LSI??QQ (v).

q1,92€p1," Pk

If we take every p1,-- -, pg in the region of 1 < p; < --- < pg < n, each ngqQ (v) for fixed q1, g2 on the
rightside of the inequality appears (Z:g) times. Thus we obtain the following inequality:

N 1
hank(v) =

.)
S LW > Y LP (0) = i (v).

n—2
(k—2) 1<p1<--<pr<n 1<p1<p2<n

On the other hand, for the shortest path from v to ¢ in the n-dimensional graph G, we can consider

the projection of this to each k-dimensional subgraph Ggf? pp- Let L;,(llf)---,pk (v) denote this projection
path length from v[(,]f?...ypk to tgf?...}m in Ggf),...,pk. Then it is obvious that L;(lk:)“':pk (v) > Lgﬂ...,pk (v). If
we remark that L;,(llf)...,pk DD — LZJ(IZED (v), we can prove that
~ 1 k
hanr(v) = ——5 Z ngn),m,pk (v)
(k—2) 1<p1 < <pp<n
1 1k
< wm o Y Lla= Y LRL0=h)
(ku) 1<p1 < <pr<n 1<p1<p2<n

124

by a similar argument above.
Thus we conclude that hpair(v) < hanr(v) < h(v) for all v € V, which means that the estimator
han-x gives tighter bound for the actual path length h than hApar. O

However, as we shall see later in our experiments, it is quite difficult to compute this estimator
efficiently. Therefore instead of utilizing all k-dimensional sub-alignments, we use the information of
one k-dimensional sub-alignment and the rest (n — k)-dimensional sub-alignment.

Theorem 6 Let sp,,- -, Sp, be arbitrary chosen k sequences, and let sy, .-, Sp, be the rest n —k
sequences. Then the following estimator flone_k 18 dual feasible:

~ k —k
hone—k(v) = L1(713---,pk (U) + L1(77Z+1a)'":Pn + Z Z Pupy
=1 j=k+1

Proof: For any edge (u,v) € E,

2 2 k n—k)
l(u7 U) + hone—k(v) = Z l((7])7 ’EJ)) + Lz(jl)a"'apk (U) + L;k-&-h . ,pn + Z Z 1(3,)173
1<i<j<n =1 j=k+1

k
(5 z<u§3>,v§3>>+L,s13...,pk<v>)

1,JEP1,y 5Pk 1<J

2 ,@ (n—k) 2 2 2
+ (Z l(0,5) 7,]) + ka+17"'7pn) + Z Z (1(71)17]’ 1(717)17]) + 1(71:)17_7 (U))

i7j€pk+17"'7pn7i<j 1= 1] k+1

k k) B
> LI(713"':P1€ (u) + LI(7712+17 : 7Pn + Z Z 1(37);)] w) = hone-k (U)
=1 j=k+1

The estimator flone_k also gives tighter bound for A than fbpair.
Proposition 7 Rpair(v) < honer(v) < h(v) for allv e V.

Proof: With the same argument as the proof of Proposition 5, Lgf),m,pk() and L=h (v) satisfy

Pk+1,"Pn
that ®
Lpipp(v) 2 Yoo LY,

q1,92€P1," Pk

n—k
LI(7R+17)' ,Pn() Z Z Lg?(h(v)

‘I1a(12€pk+la"'apn

for any vertex v € V. Thus ﬁone_k(v) > Bpair(v) is satisfied.
We can also prove that

~

k n—k
hone—k(v) = LI(H?"',pk() LZ(%-H:)' J’n +Z Z Pupj

= 1] k+1
k n—k)
S L;(l:)"'zpk (U) + L;(Ic-ﬁ-l: : 7pn + Z Z ;3(12,;7J Z L:](12,2]2 (U) = h(U)
i=1 j=k+1 1<qi1<g2<n
Thus we conclude that hpair(v) < Aope-(v) < h(v) for any v € V. O

Note that, for fixed k, Ptk usually gives the tightest lower bound for A among these three esti-
mators.

From Proposition 5 or Proposition 7 we can see that, with the estimator fbau_k or fbone_k, the A*
algorithm utilizing the upper bound always bounds the search space tighter than the branch-and-
bound techniques by Spouge [8] or the return-cost pruning by Gupta et al. [2].

125

5 A New Bounding Technique Using Va

In the previous section we have presented two new estimators which utilize the information of £ > 3
dimensional sub-alignments. When we compute a value of estimator h(v) which uses the information

of k-dimensional sub-alignments, we must know the shortest path length from v() pp 1O tz(:']f),~~~,pk in
G() ...p, for the corresponding vertex vgf?...ypk to v. However, even if k£ = 3, each subgraph Gg),p%m

contains about 108 vertices when the length of each sequence I; ~ 500(1 < i < n). Therefore computing

k
e € V-

we must consider computing the shortest path lengths in G;g...,pk only that are truly required for the
search of the shortest path in the original graph G.

Let xé’f?...ypk denote the shortest path length from sl(glf?...ipk to tl(g?...,pk in Gz(alf),---,pk- Then Vp(ll?..,pk (A)
is defined as the set of vertices v},’f) o € Vp(lk) .py Such that there exists at least one path from sgf?...ypk
to tgf? pp Via vl(glf?. .pr Whose length is at most xlgf), .pr +A. This is the same concept that Shibuya
and Imai [6] utilized for finding sub-optimal alignments. The following two theorems hold.

the shortest path lengths to tél) .pp for all the vertices vy, . 15 quite inefficient. Thus

Theorem 8 Let & denote some existing upper bound for the shortest path length from s to t in

G. Then we only need to compute the shortest path lengths to tél) pp UM Gél) .pp for the vertices

vl(glf? ok € Vp(ll?..,pk(A) for A given by the following constraint:

n—2 . k
A:<k_2>'x_ Z xél? “Pk*

1<p1<-<pp<n

Proof: For any vertex vpl o EV; p1, pi(A) for above A, we show that the shortest path length z’

from s to t via v’ € V, which corresponds to v;(f’?..,pk, is always longer than z.

1 (k) 1 n—2 R R
C T (2™ ’p’“M) B (”3)'<k—2) =

1<p1 < <prp<n

a

Theorem 9 Let & denote some existing upper bound for the shortest path length from s to t in G.

Then we only need to compute the lengths of the shortest path to tl(g?...,pk m Ggf),...,pk (or to tz(:,z:ﬁ)...ypn

in Gg:;lk’)...’pn) for the wvertices vgf?...,pk € Vp(f) (A (or Ué:;ﬁ?~,pn € Vp(,?ﬂlf). pn(A), respectively) for

A given by the following constraint:

_ A (k) (n—k)
A=3— | Zpp T Tppyrpn T Z Z pz,p]
i=1 j—kt1

(n—k) ¢

Proof: Similar to the proof of Theorem 8. For any vertex ”pl, o E Vi ph oe(A) (or vp,

Vp(,::llf) pn(A)) f01("k)above A, zve show that the shortest path length ' from s to t via v' € V, which
/

corresponds to vp; .. p, (Or Upy +17) pns Tespectively), is always longer than .

||
‘H>

(k) (n—F)
0> o+ + S Y @ Thop,
=1 j=k+1

126

Note that any vertex v € V' whose corresponding vertex vz(,lf) L(A) & Vp(llf) .pi(A) for some k and
p1,- -+ ,Pr can be ignored in the search of the shortest path s to t in G, which is regarded as the

extension of Carrillo and Lipman’s bounding techniques [1] to £ > 3 dimensional sub-alignments.
Finally we must consider the way of computing VZ:,(llf ?..J)k (A) for Gz(alf),---,pk- Fortunately it is rather
easy for the A* algorithm to compute the exact Vp(lk ?"J’k (A) efficiently.
For simplicity, we use G,V,Va,s,t,v,x instead of Ggf?...,pk, Vp(ll?..,pk, Vp(ll?..’pk (A), sgf? PR tgf), PR
vl(jf? Ph ng) .pr» Tespectively. The algorithm to compute the shortest path lengths h(v) from v to ¢
for all the vertices v € Va for G goes as follows:

Algorithm Vx

~

1. Compute the shortest path length x by the A* algorithm with the estimator h = Bpair in the
direction from s to t.

2. Continue the search by expanding vertices as far as f(v) = §(v) + h(v) < z + A holds. (Note
that the actual shortest path length g(v) from s to v has been computed for any expanded vertex
v in the A* algorithm with the dual feasible estimator.)

3. Obtain the actual shortest path length h(v) = gi—.s(v) from v to t using the A* algorithm in the
direction from t to s with the estimator hy_s(v) = g(v) computed in step 2., by continuing the
search as far as fi—s(v) = Gims(v) + hy—s(v) < x + A holds.

6 Algorithms

The whole algorithm using the A* algorithm with the estimator Ptk goes as follows:

Algorithm 1

1. For each i,j(1 <i < j <mn), apply DP to the graph Gl(-?j) from tl(-?j) and compute the shortest path

length from v() to t() for every vertex v() ‘/1572)

2. Compute V},(lk,)

(D) for all pr,-- -, pe, 1 <p1 < - < p < n by Algorithm Va.
3. Apply the A* algorithm with the estimator Ball—k to the graph G in the direction from s to t.

Similarly, the whole algorithm using the A* algorithm with the estimator Ponek goes as follows:

Algorithm 2

1. For each i,j(1 <i < j <mn), apply DP to the graph GZ(-’Z]-) from tl(-’zj) and compute the shortest path

length from v() to t(for every vertex v() V(2).
2. Choose k sequences Sp,,-+-,8p, € Sp,,--,8p, appropriately, and compute V}J(ll?..,pk(A) and
1/13(:+1]f) pn(A) by Algorithm Va.

3. Apply the A* algorithm with the estimator honerc to the graph G in the direction from s to t.

Further we can extend Algorithm 2 to a recursive version. In other words, we compute each

Vp(llf ?--,pk (A) with the A* algorithm utilizing the information of (k—1)-dimensional subgraph GIS’I,‘..{)p,C_l.

In Algorithm 2 we compute Vp(l,) . (A) using the A* algorithm with the estimator ﬁpair in step 1.
of Algorithm Va, which only utlhzes the information of 2-dimensional subgraph. This may cause
wastefully wide estimate of actual Vp(llf ?"J’k (A) in step 2. of Algorithm Va. This recursion requires

solving a lot of search problems, which may cause the increase of computational time, thus it seems

127

meaningless at a glance. However, by this recursion, we can save the search space we must hold at
a time. Since it is often occurred in the large-scale multiple sequence alignment problem that the
computation nearly comes to a halt due to a lack of memory caused by the enormous search space,
this improvement is not so worthless.

7 Experimental Results

In this section, we examine the efficiency of our approach. We performed several experiments aligning
actual sequences of proteins. In the experiments, the PAM-250 matrix was used for score function,
and gap penalty was —8, which is the minimum value in the PAM-250 matrix. As to the upper bound
in subsection 3.1, the actual shortest path length was utilized in order to examine the best possible
cases. All the experiments were done on Sun Ultra 2 workstation with 1024 megabyte memory.

7.1 Cases with High Similarity

We used 9 sequences, elongation factor TU (EF-TU) of Haloarcula marismortui and Methanococ-
cus vannielii, and elongation factor la (EF-1) of Thermoplasma acidophilum, Thermococcus celer,
Sulfolobus acidocaldarius, Entamoeba histolytica, Plasmodium falciparum, Stylonychia lemnae, and
Euglena Gracilis. The length of each sequence is about 420-450, and the similarity among sequences
is quite high. We computed the optimal alignments of first 7 < n < 9 sequences of them. Table 1
shows the results of these experiments. In our programs, we use heaps for management of vertices in
graphs. The column of ‘max #nodes in heaps’ shows at most how many vertices are in heaps at a
time, which is roughly in proportion to the required memory space. The column of ‘total # VA’ shows
the sum of the number of vertices in all required Va. ‘estimate search’ means step 2. of Algorithm 1
or 2, and ‘final search’ means step 3. of them. ‘fbone_k, rec’ in the column of ‘estimator’ means that the
computations of the corresponding rows are done with the recursive version algorithm. In the column
of ‘final search’, ‘#visited’ shows the number of vertices whose ¢ values are renewed at least once in
the search of step 3., while ‘#expanded’ shows the number of vertices whose actual g values have been
computed (i.e. expanded).

The estimator flone_k for k = [n/2] works well in view of computational time in most of cases, and
the recursive-estimate algorithm with the estimator flone_k always saves the required search space in
comparison with the corresponding non-recursive algorithm with ﬁone_k, except for the case n = 7 and
k = 5. When k becomes larger, the estimator fbone_k gives tighter bound for h, and the final search
goes more efficiently. However, the cost of computing Va increases, and the total efficiency becomes
lower. In the rows of ‘ﬁone_k, rec’, the column of ‘max #nodes in heap’ sometimes stays constant for
the same n. For example, the columns ‘max #nodes in heap’ of ‘?zone_k, rec’ for n = 8 are always
480,366. This is only because the computation of VA for & = 4 takes search space most, and it does
not necessarily hold. However, we can say the effect of recursive-estimate grows larger, if k£ increases
with the same n.

The estimator fbau_k is inefficient in view of both computational time and required search space,
although it gives the tightest bound for h with fixed £ and n. One reason of this will be that the
number of searches required for computing all Vj is (}), which is quite large.

Although the A* algorithm with the estimator flpair could not compute the optimal alignment for
9 sequences in a few hours, the A* algorithm with the estimator honese finished computing it in less
than one hour. The effect of the new estimator izone_k appears more clearly if the number of sequences
n increases.

7.2 Cases with Low Similarity

We used 6 sequences, Extracellular globin of Lumbricus terrestris - AIIl, Myoglobin of Aplysia li-
macina, Dimeric myoglobin of Busycon canaliculatum, Monomeric hemoglobin of Chironomus thummi

128

thummi - VIIA, Monomeric insect hemoglobin of Chironomus thummi thummi - I1Ia, and Monomeric
hemoglobin of Lampetra fluviatilis. The length of each sequence is about 140-160. The similarity
among sequences is quite low. We computed the optimal alignments of first 5 < n < 6 sequences of
them. Table 2 shows the results of these experiments. The A* algorithm with the estimator ﬁone_k
could compute the optimal alignment of 6 sequences for about one hour, which the A* algorithm with
the estimator ﬁpair could not finish computing in a few hours. The effect of new estimator Bone_k ap-
pears more clearly than the cases with high similarity, and this time the recursive-estimate algorithm
works well in view of both computational time and required search space.

final search time

n | estimator | k| A max.#nodes total .. estimate | final search | total
in heaps | # Va | #visited | #expanded (sec) (sec) (sec)
Ppair 2| - 48985 - 48985 48050 - 64.00 | 64.00
1145 148403 | 71718 7869 7769 20.79 1087 | 31.66
honee | 5| 102 128395 | 22025 2436 2358 28.64 2.60| 31.24
6| b1 271351 3590 685 6835 48.22 0.28 | 4850
1145 130036 | 71718 7869 7769 25.15 10.95| 38.73
7 | hope.rs T€C | 5 | 102 130036 | 22025 2436 2358 38.20 2.84 | 43.69
6| 5l 130036 3590 685 6835 44.94 028 47.86
31153 959750 | 956325 3425 3330 | 156.49 T4 | 236.20
i 1153 1628248 | 1627406 842 831 | 699.66 17.07 | 716.75
all-k 5 | 106 456722 | 456133 589 581 | 555.66 2.82] 558.49
6| 63 270838 | 35643 196 496 | 369.35 0.25 | 369.62
Bpair 2| - 545274 - 545274 541804 - 1902.00 | 1902.00
11239 524310 | 330092 | 47686 47541 | 118.68 17348 292.16
i 5| 203 746706 | 218350 | 31209 30601 | 210.32 108.25 | 318.57
one-k "6 159 896020 | 90307 | 10819 10686 | 508.88 30.00 | 538.88
8 71 62 2581205 5095 1237 1221 | 1245.47 1.18 [1246.65
41239 480366 | 330092 | 47686 47541 | 138.43 172.93 | 314.92
i 5 [203 480366 | 218350 | 31209 30601 | 234.39 111.75 | 349.71
one-k» ¢ g1 480366 | 90307 | 10819 10686 | 402.83 32.33 | 438.73
71 62 480366 5095 1237 1221 456.88 1.10| 461.64
i 51307 3035758 [1085619 [145809 144756 | 1345.41 1658.33] 3003.74
0 one-k 761265 5404970 | 914629 | 58121 57330 | 6158.02 536.52 | 6694.54
i 5[307 2292052 | 1085619 | 145809 144756 | 1410.67 1747.02 | 3162.30
one-k» ¢ FETHE5 2640782 | 914629 | 58121 57330 | 4542.51 672.92 | 5220.04

Table 1: Results for the alignments of EF-TU and EF-1a.

final search time

n | estimator | k| A max.#nodes total .. estimate | final search | total
in heaps | # Va | #visited | #expanded (sec) (sec) (sec)
Rpair 2| - 421791 - 421791 421007 - 420.00 | 420.00
5 i, 31300 308514 | 103947 | 204567 203314 13.74 62.48 76.22
one-k 41127 431782 81714 26627 26479 52.30 6.50 58.80
hone-k, Tec | 4 | 127 334645 81714 26627 26479 58.79 6.32 65.26
3 4| 421 3791554 | 1153970 | 2637584 2626672 678.75 3163.66 | 3842.41
6 one-k 51222 9773133 | 858553 | 239686 236818 | 7852.13 208.17 | 8060.30
i 4| 421 3010833 | 1153970 | 2637584 2626672 665.97 2938.69 | 3604.89
one-k» € FE595 4185955 | 858553 | 239686 236818 | 3458.79 214.29 | 3673.31

Table 2: Results for the alignments of globin.
129

8 Concluding Remarks

In this paper, improvement of the A* algorithm for the multiple sequence alignment problem has been
considered, by introducing two new powerful estimators Bone_k, Ball_k which utilize £ > 3 dimensional
sub-alignments. A new bounding technique using VA has been also proposed. Our algorithm using
estimator flone_k is also extended to a recursive-estimate version.

For fixed k£ and n, the estimator Patik usually gives the tightest lower bound for actual length A of
the shortest path to ¢, among three estimators hone ks hau &, and the original hpalr proposed by Ikeda
and Imai. However, computing hau , requires a lot of searches. In our experiments, using hau 1 turned
out to be inefficient, although the search goes very effeciently after required values of estimator hau k
has been computed. Thus the main difficulty when using ﬁall_k lays in computing required values of
this estimator.

On the other hand, it turned out to be quite efficient to use the estimator Ronese in view of
computational time. The effect of using flone_k grows larger when the number of sequences n increases,
or the similarity among sequences is lower. The recursive-estimate version of this ﬁone_k saves the
required search space, which sometimes decreases computational time. This effect also grows larger
when the number of sequences n increases, or the similarity among sequences is lower.

As for future works, we should extend these alignment algorithms based on the A* algorithm
to cope with the affine gap costs. We should also develop more efficient estimators and bounding
techniques.

Acknowledgement

This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas,
“Genome Science” from the Ministry of Education, Science, Sports and Culture of Japan.

References

[1] Carrilo, H. and Lipman, D.J., The Multiple Sequence Alignment Problem in Biology, SIAM J.
Appl. Math., 48(5):1073-1082, 1988.

[2] Gupta, S.K., Kececioglu, J.D., and Schaffer, A.A., Improving the Practical Space and Time Ef-
ficiency of the Shortest-paths Approach to Sum-of-pairs Multiple Sequence Alignment, J. Com-
putational Biology, 2(3):459-472, 1995.

[3] Hart, P.E., Nillson, N.J., and Rafael, B., A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEFE Trans. Sys. Sci. and Cyb., SSC-4:100-107, 1968.

[4] Tkeda, T. and Imai, H., Fast A* Algorithms for Multiple Sequence Alignment, Proc. of 5th Work-
shop on Genome Informatics, 90-99, 1994.

[5] Tkeda, T., Applications of the A* Algorithm to Better Routes Findings and Multiple Sequence
Alignment, A Master’s Thesis, Department of Information Science, University of Tokyo, 1995.

[6] Shibuya, T. and Imai, H., Enumerating Suboptimal Alignments of Multiple Biological Sequences
Efficiently, Proc. of Pacific Symposium on Biocomputing, Maui, 409420, 1997.

[7] Shibuya, T., New Approaches to Flexible Alignment of Multiple Biological Sequences, A Master’s
Thesis, Department of Information Science, University of Tokyo, 1997.

[8] Spouge, J.L., Speeding Up Dynamic Programming Algorithms for Finding Optimal Lattice Paths,
SIAM J. Appl. Math., 49(5):1552-1566, 1989.

130

