Using Kleisli to Bring Out Features in BLASTP Results

Jing Chen Daphna Strauss Limsoon Wong
cjing@krdl.org.sg daphna@krdl.org.sg limsoon@krdl.org.sg

Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613

Abstract

BLASTP gives a good overall indication of what function a protein might have. However, anal-
ysis of BLASTP reports to discover various domain features in the protein is still tedious. We
address this problem by using the modern data integration system, Kleisli,! to bring out anno-
tated features of BLASTP results. We further strengthen our solution by incorporating additional
information from SEG, ClustalW, hmmPfam, etc. It is also noteworthy that the codes of our
implementation is sufficiently short to be presented in its entirety.

1 Introduction

Computer-assisted analysis of protein sequences is extensively used in sequence database searches.
The result of such searches is used for the rapid identification of functions of a protein by analogy
to proteins of known functions. One of the most popular tools for this purpose is BLASTP [2] or its
several relatives [3, 1, etc.]

The basic version of BLASTP operates as follows. We submit a protein sequence. A big database of
sequences is scanned for similar sequences or, abusing the term slightly, “homologs.” Once the scan
is completed, BLASTP produces a summary and a detailed report of the hits. The summary is a
list of homologs that are found and their similarity score. The detailed report is a list of pairwise
alignments for each region of each homolog that has significant similarity to our protein. As a result, if
the alignments extend strongly over the whole of our protein, we can roughly tell what kind of protein
we have. However, if the alignments are in scattered regions, more tedious work is needed to examine
these alignments to figure out the overall function of our protein. Moreover, if we wish to have a more
detailed idea (such as identifying various domains and active sites) than the overall function of our
protein, even if we have some alignments that extend over the whole of our protein, some tedious work
is still needed.

What does the “tedious work” involve? At the very least, it means going to Entrez [15] to fetch the
GenPept report associated with each interesting homolog, so that we can inspect the feature table
in this report to see if the aligned regions fall within any interesting feature or domain annotated in
the feature table. Then, we have to copy these regions to a file and perform a ClustalW [17] multiple
alignment to check if the positions that aligned with our protein are interesting conserved positions.

! Kleisli will soon be made available by KrisTech Inc. in California under the name KRIS. KRIS stands for both
“Kleisli Related Integration System” and “Kent Ridge Integration System” to distinguish it from the early prototype
developed several years ago at the University of Pennsylvania. This new name KRIS is chosen also because it means
the “wavy-bladed” type of daggers original to the Malay archipelago where the industrial-strength version of Kleisli was
developed—Singapore.

102

And so on. Thus the detailed analysis of BLASTP result can be quite time consuming, especially for
the inexperienced.

There have been some recent progress to make the output of BLASTP easier for analysis, especially
along the visual dimension. For example, the new BLASTP server at the National Center for Biotech-
nology Information (NCBI) introduced a graphic representation of the hits.? Here is roughly what
it does. A horizontal line is drawn to represent the user’s protein. One horizontal line is drawn for
each homolog and placed in a position that corresponds to its alignment to the user’s proteins. Each
line is colour-coded by its similarity to the user’s protein. Also, if you click on a line, the correspond-
ing alignment report pops up. It is certainly a more vivid summary than the pure-text version of
BLASTP. An earlier effort is BEAUTY [22], which has more primitive graphics, but incorporated
motif hits from Prosite [4]. A more sophisticated effort is that of [11], which added features such as a
means to export the pairwise alignment reports for multiple sequence alignment.

Simple visual representation as described gives no information about domains and their positions in
our protein. It merely tells us which part of our protein aligns well with which part of a homolog,
as it has no idea which part of a homolog contains which domain. Prosite motifs and other domain
predictions give slightly more information about the presence of domains and their positions in our
protein than simple visualization. However, Prosite motifs and other domain predictions cover only
about a thousand different families of domains. There are certainly many more families of domains
that can be found in feature tables of proteins. In other words, annotated features in GenPept reports
can potentially tell us more about the present of domains and their positions in our protein sequence.

It is not surprising that earlier approaches have ignored annotated features of homologs, in spite of their
being much more informative than simple visual representation of alignments and mere incorporation
of Prosite motifs and other more sophisticated forms of domain prediction. For there are several
serious challenges to bringing out annotated features in BLASTP reports. First, we must have the
ability to analyse BLASTP reports to figure out which feature tables are needed. Second, we must
have the ability to extract these rather complicated feature tables from GenPept reports either locally
or remotely from FEntrez. Third, we must have the ability to integrate information extracted from
feature tables and BLASTP reports and possibly other tools or sources. These obtacles call for an
advanced database integration tool.

Kleisli [9] is an advanced integration technology that attempts to scale this bioinformatics “tower of
babel.” Many bioinformatics problems (1) require access to data sources that are high in volume,
highly heterogeneous and complex, constantly evolving, and geographically dispersed; (2) require
solutions that involve multiple carefully sequenced steps; (3) require information to be passed smoothly
between the steps; (4) require increasing amount of computation; and (5) require increasing amount of
visualization. Kleisli is designed to handle the first three requirements directly. In particular, Kleisli
provides the high-level query language CPL [7] that can be used to express complicated transformation
across multiple data sources in a clear and simple way. In addition, while Kleisli does not handle the
last two requirements directly, it is capable of distributing computation to appropriate servers and
initiating visualization programs.

In this paper, we demonstrate how to bring out annotated features from BLASTP reports and how
to integrate additional sources into BLASTP reports. We show that obstacles mentioned earlier can
be easily overcome by using a modern database integration system like Kleisli and a high-level query
language like CPL. In fact, our implementation using Kleisli/CPL is sufficently short that we even
have room to show our entire program in this paper.

We organize our presentation as follows. Section 2 gives a preliminary CPL program that brings out

2 See http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-newblast?Jform=0.

103

annotated feature from BLASTP reports. Section 3 gives a refined solution that produces less verbose
output. Section 4 describes an on-line demonstration of our implementation that we have put on the
World-Wide Web. Section 5 gives some closing remarks.

2 Preliminary Solution

We demonstrate step-by-step in this section, how simple and easy it is to add feature information to
BLASTP by writing CPL programs and running them in Kleisli.> We assume that SEQ is the protein
sequence from the user.

First we need some functions for calculating the minimum, maximum, and absolute difference of
two numbers. Their definitions are standard. The implementation in CPL is given below. The line
numbers are for ease of reference later.

1. primitive min == (\x, \y) => if x < y then x else y;
2. primitive max == (\x, \y) => if x < y then y else x;
3. primitive diff == (\x, \y) => if x < y then y - x else x - y;

Next, we make a connection nr-blast to perform BLASTP on the non-redundant protein database
“nr” at the NCBI, as shown below. Subsequently, to compare the protein sequence SEQ against “nr”,
all we need is to execute the CPL expression process SEQ using nr-blast.

4. webblast-blastp-detail (#name: "nr-blast", #db: "nr", #level: 1);

Then we perform BLASTP on the protein sequence SEQ. Then for each homolog, we obtain its feature
table and sequence from Entrez. These two pieces of information are integrated with the alignment
from BLASTP to give us features in homologs that align well with SEQ. The CPL program to carry
out this process is given below.

5. primitive blast-with-feature ==

6. [(#start: gs, #end: qe, #hits: [(

7. #uid: x.#uid, #accn: x.#accession, #title: x.#title,

8 #identities: i.#Matching-Percentage, #query-start: gs, #query-end: qe,
9 #feat—-start: f.#start, #feat-end: f.#end, #feat—anno: f.#anno)])

10. | \x <- process SEQ using nr-blast,

11. \t <- aa-get-feature-by-uid (x.#uid), \S <- aa-get-seq-by-uid (x.#uid),
12. \h <--- x.#hits, h.#pscore <= 1.0E"8,

13. \f <- t.#feature, not (f.#anno = []), not (f.#name = "source"),

14. (f.#end - f.#start) > 4,

15. f.#start > (h.#subjectstart - 20), f.#end < (h.#subjectend + 20),

16. \u == min (f.#end, h.#subjectend) - max (f.#start, h.#subjectstart),
17. \v == min (f.#end - f.#start, h.#subjectend - h.#subjectstart),

18. (((w + 1) / (v + 1)) = 100) > 80,

3 Due to space limitation, we focus on explaining the logic of our programs, rather than their syntax. The interested
Reader can consult [19] for a complete definition of the syntax, as well as the definitions of all the functions available
in CPL. We recommend the paper [7] as background for the comprehension syntax {e | \z <- e, C'} used liberally in
CPL. We further recommend the papers [8] and [18] for a basic introduction to the theory underlying CPL. The paper
on TPR domain hunter [13] in this volume also has more information on Kleisli.

104

19. { O | \a <--- f.#anno, a.#descr string-islike "Jconflict}"} = { },

20. \gs == (f.#start - h.#subjectstart) + h.#querystart,
21. \ge == (f.#end - h.#subjectend) + h.#queryend,

22. \s1l == string-span (S.#sequence, f.#start, f.#end),
23. \s2 == string-span (SEQ, gs, qe),

24. \i <- minalig-doit (s1, s2)];

25. materialize "blast-with-feature";

As this CPL program is fairly long, we step through it in detail. First, BLASTP is performed on SEQ
against “nr” at NCBI (line 10). For each homolog x, we use the CPL function aa-get-feature-by-uid
and aa-get-seq-by-uid to obtain its feature table t and its protein sequence S from NCBI (line 11).
Then we examine each region h in x that BLASTP has aligned with our protein SEQ, discarding the
region if its pscore is weak (line 12); here we use 178 as our threshold.

Next we have to figure out which feature of x does this region h fall into. So we examine every feature
f in the feature table t, discarding the feature if it has no annotation or if it is not interesting (line
13); here we take the “source” feature to be uninteresting since it merely tells us which organism the
protein is from. We discard the feature if it is too short (line 14). We also discard the feature if either
end of it sticks too far out of the aligned region h (line 15); the threshold we use is 20 amino acids.

Next we make sure that the feature overlaps at least 80% of the aligned region h (lines 16-18). Finally,
we make sure that the feature does not contain any annotation that indicates error (line 19). The equa-
tion used for this check, {() | \a <--- f.#anno, a.#descr string-islike "Yconflict%"} = {},
deserves a more detailed explanation. The left-hand-side of this equation evaluates to the singleton set
{(} if and only if there exists some a in the annotations on f and the description of this annotation
a contains the word “conflict.” Thus the equation is true if and only if no annotation on f contains
the word “conflict.”

At this point, we have basically identified that f is a feature in x that falls in region h of x and is
relevant. Now we need to map it onto our original protein sequence SEQ and compute its percentage
sequence identity to that part of SEQ. To explain how we do the mapping, we need some technical detail.
The description returned by BLASTP on h has several fields. The #subjectstart and #subjectend
fields of h tell us the start and end positions of h in the sequence S of x. Similarly, the feature £ has
several fields. The #start and #end fields of £ tell us the start and end positions of f in the sequence
S of x. On the other hand, the #querystart and #queryend fields of h tell us the start and end of
the region of SEQ that BLASTP has aligned with h. Thus, to derive the place in SEQ that £ should
align with, we have to compute the offsets of the start and end positions of £ with respect to the start
and end positions of h and then add these offsets to the start and end positions of the region of SEQ
that BLASTP has aligned with h. These calculations are done in lines 20-21* and gs and ge are set
to the resulting start and end position respectively. The sequence corresponding to the feature £ and
the region it maps to on SEQ are then extracted and aligned using the CPL function minalig-doit
(lines 22-24) and i is set to the resulting alignment.

Then a record of the relevant information is constructed and included in the set blast-with-feature
(lines 5-19). This set is “materialized” and stored for subsequent use (line 25). It is of interest to
describe the members of the set blast-with-feature further. Each member has three fields #start,
#end, and #hits. Fach member represent a feature of a BLASTP homolog in “nr” of SEQ. The
#start and #end fields indicate the place in SEQ that this feature maps to. The #hits field is at
this point a singleton list storing information of this feature. The information is the unique identifier

4 The formula here is good for ungapped alignment, which is easy to understand. For gapped alignment, a more
complicated formula is used.

105

of the homolog in “nr” (the #uid field), the accession number of this homolog (the #accn field), the
title of this homolog (the #title field), the percentage sequence identities that this feature has with
respect to the region in SEQ that it has been mapped to (the #identities field), the start and end
positions in SEQ that it maps to (the #query-start and #query-end fields), its start and end position
in the homolog (the #feat-start and #feat-end fields), and the annotations on this feature (the
#feat-anno field).

The preceding CPL program is sufficient for figuring out exactly what feature of which homologs are
similar to which part of our protein SEQ. Let us take a look at an example output from it before we
discuss some improvements we make in the next section:

(...
(#start: 279, #end: 365,
#hits: [(#uid: 2497506, #accn: "spl|Q92796|SPO2_HUMAN",
#title: "PRESYNAPTIC PROTEIN SAP102 ...",
#identities: 35.632184, #query-start: 279, #query-end: 365,
#feat-start: 378, #feat—-end: 464,
#feat—anno: [(#anno_name: "note", #descr: "DHR 3."),
(#anno_name: "region_name", #descr: "Domain")]1)1),
(#start: 286, #end: 366,
#hits: [(#uid: 400891, #accn: "sp|P31016|SP90_RAT",
#title: "PRESYNAPTIC DENSITY PROTEIN 95 ...",
#identities: 34.567901, #query-start: 286, #query-end: 366,
#feat-start: 312, #feat-end: 392,
#feat-anno: [(#anno_name: "note", #descr: "DHR 3."),
(#anno_name: "region_name", #descr: "Domain")])]),

From the example output above, we see that the region 279-366 of SEQ has been identified as a DHR
domain [14], similar to those of some presynaptic proteins. In contrast, the standard BLASTP output
is merely able to tell us that SEQ has some homology to some presynaptic proteins. This useful
information on domain is precisely the extra information that our 25-line CPL program provides.

3 Refined Solution

However, the output from the CPL program of the previous section is a little annoying. It tells us
at least twice that the region 279-366 maps to a DHR domain. This is too verbose and is probably
unnecessary. Let us now show how we can improve the output by grouping together such overlapping
predictions. As a further refinement, we also sort each group by percentage sequence identity.

Before we proceed, we need some criteria to decide when to group together two domains or re-
gions. We use a simple one here: the two regions must overlap more than 50% and the differences
of their end points must be less than 30%. These conditions are captured by the CPL program
domains-should-be-merged given below, where d1 and d2 are the two input regions.

26. primitive domains-should-be-merged == (\d1, \d2) =>

27. let (\s1, \el, \s2, \e2) == (dl.#start, dl.#end, d2.#start, d2.#end) in
28. let \ave == ((el - s1) + (e2 - s2)) / 2

29. in (s1 < e2) andalso (s2 < el)

106

30. andalso ((sl diff s2) < (0.3 * ave)) andalso ((el diff e2) < (0.3 * ave))
31. andalso ((min (el, e2) - max (s1, s2)) > (0.5 * ave));

It would be nice if we output the regions in a 5-to-3’ or left-to-right order. So we need a function
sort-domains to sort regions according to their positions in SEQ. This function is generated by the
higher-order function list-gensort provided in CPL, as shown below. Basically, given a sort pred-

icate P, list-gensort P [o1,...,0,] evaluates to [0],...,0],], where [0],..., 0] is a permutation of
[01,...,0y] such that o] P --- P 0; in other words, [0],...,0}] is [o1,...,0,] sorted according to P.
32. primitive sort-domains == list-gensort ((\x, \y) =>

33. (x.#start > y.#start) orelse ((x.#start = y.#start) andalso (x.#end > y.#end)));

Now everything is in place for us to improve our feature-enhanced BLASTP using the 14-line CPL
program below. First, we sort the regions given in blast-with-feature in the previous section
to facilitate grouping (line 35). Next, we group together those regions that overlap significantly as
defined by the criteria domains-should-be-merged (lines 36-42). Third, within each group, we sort
the regions in descending order of sequence identity (line 45), and we adopt the start and end positions
of the region having the strongest sequence identity to be the start and end positions of the merged
region (lines 43, 46). Finally, we sort the list according to the new start and new positions (line 47).

34. primitive blast-with-domains ==

35. let \sort == sort-domains (blast-with-feature) in

36. let \mix == list-irs

37. @ ((\x, \y) => if domains-should-be-merged (x, y.list-head)

38. then (#start: min (x.#start, y.list-head.#start),

39. #end: max (x.#end, y.list-head.#end),

40. #hits: x.#hits [+] y.list-head.#hits) +] y.list-tail
41. else x +] y, [sort.list-head])

42. @ (sort.list-tail) im

43. let \nice == [(#start: h.#query-start, #end: h.#query-end, #hits: S)

44, | \m <--- mix,

45. \S == list-gensort @ ((\u,\v) => u.#identities < v.#identities) @ (m.#hits),
46. \h == S.list-head]

47. in (_ => sort-domains (nice)) handle (_ => []);

There is one technical item in the CPL program above that we should point out. In the process of
merging the regions, we assume that the sorted list sort of regions is nonempty. If sort is empty,
then line 41 and line 42, which attempt to split sort into its head and tail respectively, are going to
fail with a run-time exception. This possibility of run-time failure is “handled” in line 47 using the
CPL function handle. The CPL function handle works this way: (f handle g) is evaluated by first
evaluating f(); if it evaluates successfully to an object o, then o is returned; if a run-time exception
e is raised, then g(e) is evaluated and its output is returned. Thus, if an exception is raised because
sort is empty, line 47 returns the empty list [], which is exactly what is desired.

For completeness, the output of blast-with-domains is shown below. We see that the various over-
lapping regions for each feature are now merged into one group as desired.

[...
(#start: 286, #end: 366,

107

#hits: [(#uid: 2497508, #accn: "sp|Q62936|SPO2_RAT",
#title: "PRESYNAPTIC PROTEIN SAP102 ...",
#identities: 38.271605, #query-start: 286, #query-end: 366,
#feat-start: 403, #feat-end: 483,
#feat-anno: [(#anno_name: "note", #descr: "DHR 3."),
(#anno_name: "region_name", #descr: "Domain")]),

(#uid: 2497506, #accn: "sp|Q92796|SPO2_HUMAN",

#title: "PRESYNAPTIC PROTEIN SAP102 ...",

#identities: 35.632184, #query-start: 279, #query-end: 365,

#feat-start: 378, #feat-end: 464,

#feat-anno: [(#anno_name: "note", #descr: "DHR 3."),
(#anno_name: "region_name", #descr: "Domain")]),

4 Demonstration

It is really easy to write Kleisli/CPL programs. However, the ordinary users may prefer a more
form-based interface. So it is normal to put up a web-based form interface to Kleisli/CPL programs.
The procedure is generally painless and straightforward. The web interface to our “feature BLAST”
program is available at //uracil.krdl.org.sg:8080/examples/feature-blast.

We provide a brief description here. At the above URL is the form given in Fig. 1. The user pastes
his protein sequence (in plain text, without any header information) into the large input box in the
middle of the form and sets various thresholds. These parameters are passed to the CPL programs
described earlier for execution.

Once processing is completed, the user is provided with three views of the output. The first view is
shown in Fig. 2. It offers no more information than the usual BLASTP output, but organised in a
manner that we feel might be more pleasant than BLASTP.

The second view is shown in Fig. 3. It tabulates homologs reported by BLASTP, together with their
specific features that align well with the user’s protein sequence. It thus provides the user an overall
sense of what type of domains in these homologs are similar to his sequence.

The third and final view is shown in Fig. 4. It corresponds precisely to the output of the CPL programs
discussed in the preceeding section. Its rows correspond to segments of the user’s protein sequence.
Each row corresponds to a possible domain based on annotated features extracted from BLASTP
output. It thus provides the user a more precise sense of the domains and their positions in his protein
sequence.

5 Remarks

As can be seen from the last three sections, the basic objective of bringing out annotated features in
BLASTP results can be achieved without much sweat using CPL. The explicit use of feature table
information is probably a unique aspect. It helps avoid the common pitfall of using sequence title
as annotations, which might be intended for a different region of the sequence [10]. Many bells and
whistles can be added: the incorporation of ClustalW [17], hmmPfam [16, 6], SEG [21], etc. Due

108

[8] Netscape: Feature Biast [8] Netscape: GetBlastosh (Untitled)

o] Forwae] | on | Lod e e Pre| Pt 5|
Mt o] arscrtt] pestustins earc| Peoe] o]

Jidentitics

protein (AA 1-509) [Homo sapicns] 2.68-20
protein [Rattus rattus] 6.8E~21

tyrosine kinase [Xiphophorus xiphiciurn] 8.5E~20

TVHUSR protein-tyrosine kinase (EC
27.1.112) slk — buman >gi 338228 (ML4676)
ave-like tyrosine kinase (put.); putative [Homo
zapiens]

TVFV60 protein-tyrosine kinase (EC
27.1.112) stc — Rows sarcoma virus g 61499
(VO1169) swe [Avian sarcoma virus] g 459677
(L29198) svo-p80 phosphoprotein [Rous
sascoma virs]

3.3E~19

515582 protein-tyrosine kinase (EC 2.7.1.112)

e — Rous sarcoma virus (strain Prague A) 6.4E~20

4.2B~18
4.2E~18
4.2E~18

A34076 probable tyrosine kinass receptor
preauraar — human

A41369 5 receptor kinase — wild cabbage ¥zi
167167 (VI76647) teceptor protein kinase 1.6B~136
[Brassica oleracea]

520808 protein-tyrosine kinase (EC 2.7.1.112)
5 |are — Rous sarcoma vinus >gi 49657 (E52822) 1.4B~19
v-3510-1 gene produot [Mesacricstus auratug]

CC2_CHICK CELL DIVISION CONTROL

PROTEIN 2 HOMOLOG (P34 PROTEIN

o KINASE) -5 86412 pir S06011 protein Kinase
(EC 2.7.1.37) ede2 — chicken >gi 63173

(EL6881) CDC2 kinase (AA 1 — 303) [Gallus

zallug]
EPA3_CHICK EPHRIN TYPE-A RECEPTOR
Fr 11
Figure 1: The Feature BLAST on-line demon- Figure 2: This view offers information similar

stration web page. to BLASTP.

() Netsoape: GetDomainFine osh (Unitied)

Possible Domains

3

13

Figure 3: This view provides an overall sense of Figure 4: This view provides more precise in-

relevant features in homologs from BLASTP. formation of domains and their positions in the
input protein sequence, based on annotated fea-
tures extracted from BLASTP output.

109

to page-lenght limit, we skip the detail, which can be found in the file http://sdmc.krdl.org.sg/
kleisli/ psZ/ cdw-featureblast.ps. They suggest that a reasonably good high-throughput pro-
tein sequence annotation system can be readily put together using the Kleisli system.

The accomplishments above are merely the visible part of what we have done. There is also an
“invisible” part that we would like to briefly mention here. The Kleisli system does a significant
amount of optimization on CPL programs behind the scene [20]. We close our discussion with a
relevant one here: parallelism. Let us use lines 10-11 for illustration. These three lines say, for each
BLASTP homolog x of SEQ, retrieve remotely from Entrez in Washington DC its feature table t and
protein sequence S. The actual execution of these lines does not proceed in a linear fashion. The
requests for each t and S of each x are scheduled and dispatched several at a time. This exploitation
of parallelism masks the latency of remote access and improves efficiency several folds, up to the
effectively sustainable level of parallelism.

We end this paper by making a brief comparison of Kleisli to some previous systems. It is fair to say
that SRS [12] is one of the more successful tools for integrating biology databases. It is essentially
a link-based interface. It is very convenient to use for simple operations. However, it offers no
facility for flexible transformation of data from these sources, an important aspect in more advanced
bioinformatics applications. As a consequence, one needs a significant amount of manual work if one
relies mostly on SRS for data integration. TAMBIS [5] is slightly more comparable to Kleisli. It
is an interface to many sources that come with a rather fixed set of queries that offer more slightly
interesting integration of the sources than SRS. The kind of queries that can be expressed basically have
to fall into templates anticipated by TAMBIS’ designers. Thus, the expressible queries are much more
limited than in Kleisli. In compensation to the limitation on its query expressive power, its queries
can be formulated using a looser syntax and is supported by a knowledge-driven user interface. This
could be an advantage for less skillful programmers. However, it is worth pointing out that TAMBIS
actually runs on top of an old version of Kleisli, demonstrating the value of Kleisli as a substrate for
constructing other integration systems.

References

[1] Altschul, S.F. and Gish, W., Local alignment statistics, Methods in Enzymology, 266:460-480,
1996.

[2] Altschul, S.F., Gish, W., Miller, W., Myers, E-W., and Lipman, D.J., Basic local alignment
search tool, Journal of Molecular Biology, 215:403-410, 1990.

[3] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman,
D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs,
Nucleic Acids Research, 25(17):3389-3402, 1997.

[4] Bairoch, A., Bucher, P., and Hofmann, K., The PROSITE database: its status in 1997, Nucleic
Acids Research, 25(1):217-221, 1997.

[5] Baker, P.G., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R., TAMBIS-—transparent
access to multiple bioinformatics information sources, In Proceedings of 6th International Con-
ference on Intelligent Systems for Molecular Biology, 25-34, 1998.

[6] Baldi, P., Chauvin, Y., Hunkapiller, T., and McClure, M.A., Hidden Markov models of biological
primary sequence information, Proceedings of National Academy of Science, 91(3):1059-1063,
1994.

110

[7]

[19]

[20]

[21]

22]

Buneman, P., Libkin, L., Suciu, D., Tannen, V., and Wong, L., Comprehension syntax, SIGMOD
Record, 23(1):87-96, 1994.

Buneman, P.; Naqvi, S., Tannen, V., and Wong, L., Principles of programming with complex
objects and collection types, Theoretical Computer Science, 149(1):3-48, 1995.

Davidson, S., Overton, C., Tannen, V., and Wong, L., BioKleisli: A digital library for biomedical
researchers, International Journal of Digital Libraries, 1(1):36-53, 1997.

Doerks, T'., Bairoch, A., and Bork, P., Protein annotation: Detective work for function prediction,
TIG, 14(6):248-250, 1998.

Durand, P., Canard, L., and Mornon, J.P., Visual BLAST and Visual FASTA: Graphic work-
benches for interactive analysis of full BLAST and FASTA outputs under Microsoft Windows
95/NT, CABIOS, 13(4):407-413, 1997.

Etzold, T. and Argos, P., SRS: Information retrieval system for molecular biology data banks,
Methods Enzymol., 266:114—128, 1996.

Lin, K., Ting, A., Wang, J., and Wong, L., Hunting TPR Domains Using Kleisli, This volume.

Ponting, C.P., DHR domains in syntrophins, neuronal NO synthases and other intracellular
proteins, Trends in Biochemical Sciences, 20:102-103, 1995.

Schuler, G.D., Epstein, J.A., Ohkawa, H., and Kans, J.A., Entrez: Molecular biology database
and retrieval system, Methods in Enzymology, 266:141-162, 1996.

Sonnhammer, E.L.L., Eddy, S.R., and Durbin, R., Pfam: A comprehensive database of protein
families based on seed alignments, Proteins, 28:405—-420, 1997.

Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap penalties,
and weight matrix choice, Nucleic Acids Research, 22:4673-4680, 1994.

Wadler, P., Comprehending monads, Mathematical Structures in Computer Science, 2:461-493,
1992.

Wong, L., The CPL Reference Manual, Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Sin-
gapore 119613, 1998. Available at http://sdmc.krdl.org.sg/ kleisli/ psZ/ cpl-defn.ps.

Wong, L., The Kleisli/CPL Extensible Query Optimizer Programmer Guide, Kent
Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613, 1995. Available at
http://sdmc.krdl.org.sg/ kleisli/ psZ/ cplopt.ps.

Wootton, J. and Federhen, S., Statistics of local complexity in amino acid sequences and sequence
databases, Computers and Chemistry, 17:149-163, 1993.

Worley, K.C., Wiese, B.A., and Smith, R.F., BEAUTY: An enhanced BLAST-based search tool
that integrates multiple biological information resources into sequence similarity search results,
Genome Research, 5:173—184, 1995.

111

