
A Heuristic Algorithm for Genome Rearrangements 1

Qian-Ping Gu Kazuyuki Iwata

qian@u-aizu.ac.jp m5011202@u-aizu.ac.jp

Shietung Peng Qi-Ming Chen

s-peng@u-aizu.ac.jp qmchen@u-aizu.ac.jp

The University of Aizu, Aizu-Wakamatsu, Fukushima 965-80, Japan

1 Introduction
Recently, a new approach to analyze genomes evolving was proposed which is based on the global

rearrangements (e.g., inversions and transpositions of fragments). Given the sequences of the identi-

cal genes of two species, if we express one sequence by I = (12:::n) then the other sequence can be

expressed by a permutation � = (�1�2:::�n) of f1; 2; :::; ng. Checking the similarity between genomes

based on global rearrangements leads to a combinatorial problem of �nding a shortest series of rear-

rangements that sorts the permutation � into the identity I. A signed permutation is a permutation �

on f1; 2; :::; ng with + or � sign associated with every element �i of �. The identity of signed permu-

tations is I = (+1+2+3+ :::+n). Signed permutations are more relevant to genome rearrangements,

since genes are usually considered oriented in DNA sequences. In this paper, we propose a heuristic

algorithm for sorting a signed permutation by transpositions and reversals.

2 Algorithm
Three rearrangements, reversal, transposition, and reversal+transposition, are considered in this pa-

per. Let � = (�1�2:::�n) be a permutation of f1; 2; :::; ng. For 1 � i < j � n + 1, a reversal r(i; j)

reverses the order of �i�i+1:::�j�1. For 1 � i < j � n + 1 and 1 � k � n + 1 with k 62 [i; j], a

transposition t(i; j; k) moves �i�i+1:::�j�1 to a new location of � between �k�1 and �k; and a re-

versal+transposition rt(i; j; k) reverses �i�i+1:::�j�1 and then moves �j�1:::�i to a new location of �

between �k�1 and �k.

Our algorithm makes use of the notion of breakpoint graph introduced by Bafna and Pevzner [1].

Let � be a signed permutation of n elements. We transform � to an unsigned permutation � of 2n

elements as follows: replace +i with (2i� 1; 2i) and replace �i with (2i; 2i� 1) for 1 � i � n. Notice

that the identity I = (+1 + 2::: + n) is transformed into the unsigned identity (1234:::(2n � 1)2n).

Next, we extend � = �1�2:::�2n by adding �0 = 0 and �2n+1 = 2n+1. Let i � j if ji� jj = 1. We call

a pair of consecutive elements �i and �i+1 an adjacency if �i � �i+1, otherwise a breakpoint. De�ne

a breakpoint graph G(�) of � as follows: There are 2n+ 2 nodes 0; 1; 2; :::; 2n+ 1 in G(�). There is a

grey edge between i and j if i � j and i; j are not consecutive in �. There is a black edge between i

and j if (i; j) is a breakpoint. When we refer to the breakpoint graph of a signed permutation, it is

implied that we refer to the breakpoint graph of the transformed unsigned permutation.

Given a signed permutation �, let b(�) be the number of the breakpoints and c(�) be the number

of cycles with odd number of black edges (breakpoints) in G(�). Then it has been proved that

(b(�)� c(�))=2 is a lower bound on the number of rearrangements for sorting � into I [2].

Call a rearrangement � an i-move on � if � � � = �0 and (b(�) � c(�)) � (b(�0) � c(�0)) = i. It is

known that i � 2 for any rearrangement [2]. Our algorithm follows a greedy strategy which always

executes a rearrangement with the maximum i to sort the given �. In particular, we uses the heuristic

given in Figure 1 to �nd a 2-move �(i; j; k).

3 Computer simulation and results

The algorithm has been tested on the following data:

1This work was supported by the grant-in-aid for scienti�c research on the priority area \Genome Science" from the

Ministry of Education, Science, Sports and Culture of Japan.



πi ππj k

Figure 1: The heuristic for �nding 2-moves.

a: Permutations � = �1�2 � � ��n, each �i is uniformly chosen from f1; 2; :::; ng exclusively.

b: Permutations obtained by applying f(n) random rearrangements to I , where a random rearrange-

ment �(i; j; k) is a rearrangement in which i; j; k are uniformly chosen from[1; n].

The experiment results for the data of a and b are given in Figure 2 and 3, respectively. In the �gures,
1 is the lower bound on the number of operations and 2 is the number of operations sorting � into I
by the algorithm. For the data of b f(n) =

p
n.

Figure 2: Figure 3:

References

[1] V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM J. on Computing,

25(2):272{289, 1996.

[2] Q.P. Gu, S. Peng, and H. Sudborough. Approximation algorithms for genome rearrangements. In Proc. of

the 7th Workshop on Genome Informatics, pages 13{22, 1996.


