
Fast Discerning Repeats in DNA Sequences

with a Compression Algorithm

�Eric Rivals 1 Max Dauchet 2

E.Rivals@dkfz-heidelberg.de dauchet@lifl.fr

Jean-Paul Delahaye 2 Olivier Delgrange 3

delahaye@lifl.fr olivier@sun1.umh.ac.be

1 Theoretical Bioinformatic (815)

Deutsches Krebsforschungzentrum (DKFZ)

Im Neuenheimer Feld 280, Heidelberg 69120, Germany
2 LIFL, URA 369 CNRS, Universit�e Lille I

Villeneuve d'Ascq 59655, France
3 Service Informatique, Universit�e de Mons-Hainaut

Avenue Maitriau 15, Mons 7000, Belgium

Abstract

Long direct repeats in genomes arise from molecular duplication mechanisms like retro-

transposition, copy of genes, exon shu�ing, . . . Their study in a given sequence reveals

its internal repeat structure as well as part of its evolutionary history. Moreover, detailed

knowledge about the mechanisms can be gained from a systematic investigation of repeats.

The problem of �nding such repeats is viewed as an NP-complete problem of the optimal

compression of a sequence thanks to the encoding of its exact repeats. The repeats chosen

for compression must not overlap each other as do the repeats which result from molecular

duplications. We present a new heuristic algorithm, Search Repeats, where the selection

of exact repeats is guided by two biologically sound criteria: their length and the absence

of overlap between those repeats. Search Repeats detects approximate repeats, as clusters

of exact sub-repeats, and points out large insertions/deletions in them. Search Repeats

takes only 3 seconds of CPU time for the genome of Haemophilus in
uenzae on a Sun

Ultrasparc workstation.

1 Introduction

A class of evolutionary mechanisms duplicates an existing segment of DNA or RNA and

reinserts a DNA copy in a longer DNA molecule, thereby creating a repeat. If the segment

contains one or more complete genes, the duplication directly a�ects the content in gene. The

new copy of the gene, which may not be necessary for the organism, may evolve further for

instance by punctual mutations or exon shu�ing, and thus acquire a new function. If the

DNA piece does not include any gene, this evolution \by segment", as opposed to punctual

mutations, nevertheless changes the linear structure of the target DNA molecule. It may

break an existing gene at its point of insertion, modify the overall repartition of genes or the

chromatin 3D structure. Those alterations of the genome are indirect, but crucial. Di�erent

copies of a repeat are a source of observation, measurement and comparison of further evo-

lutions. For instance, di�erent rates of punctual mutation, ampli�cation of tandem repeats

[21] or deletion of a segment can only be revealed if observed within a repeat1.

1Here, \repeat" must be understood in a broad meaning: it can also be a piece of DNA which is found in

the genomes of di�erent species or individuals.

What are the characteristics of evolutionary repeats?

Mechanisms like retrotransposition generate repeats up to a length of thousands nu-

cleotides and copies can be inserted at positions arbitrarily far away from the origin. These

are two important characteristics. Moreover, not only real repeats, i.e. molecularly duplicated

segments, but also random repeats, repeats which arise for statistical grounds, are present in

DNA. Indeed in DNA sequences, \random" short repeats must occur because the alphabet

contains only four letters. The average size of such random repeats grows with the sequence

length. If a repeat is too small, it becomes indistinguishable to see if its origin is random or

molecular; thus in this work, the result of a molecular duplication is assumed to be a repeat

of a certain length. To study molecular duplication in sequences, one must �nd a way to

distinguish random from real repeats.

Notations : In the �gures, a simple horizontal line represents a DNA sequence. Among the

light grey segments that represent many occurrences of the same subsequence, the leftmost

is named A and the following ones A0, A00, . . . (they are most often inside, but also above or

below the line of the sequence.) An arrow represents the length of the segment above which

it is drawn. In the text, s denotes the input sequence over the alphabet A, and n its length.

Another important characteristic is the absence of overlap. A molecular duplication is a

way to generate a segment of DNA. But a segment of a speci�ed length at a given beginning

position can only result from one duplication. In �gure 1, the occurrences A0 and B0 overlap,

the corresponding segment is decomposed in C, A0 \ B0 and D. Obviously, A0 \ B0 stems

from the duplication of either A or B, since only one but not both of those events may have

happened.

B’
A’

C D

A’ n B’

BA

Figure 1: The segment A0 \ B0 results from the duplication of either A or B, but not from

both. One must choose between both duplications, the overlap must be avoided.

Related works: How can we detect such duplications in a sequence?

Looking for the approximate or exact occurrences of a given pattern in a text are both

well-known problems in computer science. Such methods are unsuitable because patterns are

not known in advance. Our problem requires �rst to discover the repeated patterns with their

occurrences and second to choose a combination of repeats without overlap and containing a

maximum number of real repeats. This combination would then suggest a molecular origin

for as many as possible of the discovered repeats. Three ways of tackling this problem have

already been studied:

� Algorithms looking for optimal local alignments serve for searching similar segments

between a query sequence and all sequences in a database. With the query sequence as the

database, such algorithms look for approximate repeats according to some distance or dissim-

ilarity measure. Among others, the Smith and Waterman [19] algorithm computes exactly

all optimal local alignments scoring greater than the input threshold score in O(n2). Numer-

ous heuristic algorithms like BLASTN [2], FASTA [16] give approximate solution in the same

worst case complexity, but operate much faster on complete databases. Nevertheless, the time

requirements of those algorithms constitute a bottleneck. With an exact dynamic program-

ming algorithm for ungapped alignments, Agarwal and States reports a 4 days computation

on 6 workstations for a 3.6 Mb sequence of C. elegans [1]. A search of the Haemophilus

in
uenzae (1.8 Mb) with BLASTN with default parameters requires more than eight hours

on a Sun Ultrasparc workstation.

� Pattern discovery algorithms search segments conserved among many sequences, i.e.

approximate repeats which have been punctually mutated. We can divide them in two sub-

classes. The �rst encloses approximate methods. An example is the algorithm of Leung and

al. [13] which �nds approximate repeats as a sequence of exact blocks matches separated by

mutated blocks. Many parameters allow to tune up the results. In the other subgroup, the

exact methods are constrained to perform an exhaustive search among all putative patterns

whose number grows exponentially on the length of their length. This implies high complexi-

ties and those algorithms are thus used in practice to search for short weak patterns in many

short sequences (see [6] for a survey.)

Both previous classes of algorithms score their alignments by summing the individual

scores of all aligned residues-pairs. Only punctual di�erences are taken into consideration. If

two sequences share a similar part and one has undergone a segment deletion in this part,

then such algorithms report not one alignment showing the similar part, but two shorter local

alignments (see �gure 2.)

original sequence

sequence after insertion
of the red segment

reported by BLAST

B

B

B’

B1’ B2’

B1’ B2’

A

AB1 B2
HSPs (B1, B1’) and (B2, B2’)

insertion of a large segment A

A

Figure 2: A duplication altered by the insertion of a segment. The original sequence (�rst line)

undergoes the insertion of A inside the repeat-occurrence B0 (result on the second line.) An

algorithm like BLASTN reports 2 di�erent alignments (called HSP for High Scoring Pairs),

(B1; B
0

1
) and (B2; B

0

2
), instead of one (B;B0).

� Compression methods: Lossless compression of a text is achieved by replacing exact

copies of sub-words by an encoded pointer that indicates the location of the �rst occurrence

of this sub-word. These algorithms not only detect repeats but also choose a decomposition of

the text in a suite of factors2, some of which are repeats and therefore replaced by a pointer.

The decomposition or factorization is the result of the parsing phase (an example is shown

in �gure 5.) In comparison to other methods, its computation requires one more step to

select non overlapping repeats instead of reporting all of them. This selection may reduce the

output, making it more usable and legible.

In previous application to genetic data, for instance in Biocompress [11] or in the work of

Milosavljevi�c and Jurka [15], parsing is done in the spirit of the LZ78 compressor: on-line and

left-to-right. The constraint of being on-line comes from the stringent speed requirements

imposed in \classical" uses of text compression (in a program like gzip under Unix.) It has

no reason to be in our context. Moreover, it may results in an unsuitable factorization of the

repeats in a DNA sequence (see �gure 3.)

2We use the word \suite" instead of \sequence" when it refers to an ordered list of items, i.e. to sequence

which is not necessarily genetic. Here it is a list of factors ordered on their position in the text.

S

B

A C

B B’

C’A’

i
i+lj

Figure 3: Unsuitable factorization of the sequence by an on-line left-to-right parsing. When

the parsing reaches the position i, it �nds A0 as the longest repeat beginning at that position;

it factorizes it and reaches position i + l. Then, in the same manner it factorizes C 0. But it

misses a much larger duplication: the one of B0 which would explain the origin of the whole

segment by only one evolutionary event.

Another advantage of compression is that trying to compress a sequence is a su�cient

test of non-randomness (cf. [14] chap. 5 p. 377.) The outcome of a \compression test"

is positive, if the encoded sequence is shorter than the original sequence (a fair comparison

must be done between the lengths in bits), and negative otherwise. As it answers a su�cient

test, a positive outcome means that the repeats found in the factorization are not random

\structures". Indeed, this is because random sequences are incompressible [14]. On the other

hand, it cannot be concluded that a sequence is random in case of a negative outcome. This

is valid for any type of compression3.

In this work, we chose the compression approach because of the last two mentioned ad-

vantages. The problem of detecting repeats in a sequence is formalized as the problem of

optimizing the compression of the sequence, when only encoding duplicated segments is al-

lowed. It is known that computing the optimal compression is an NP-complete question.

We propose a new compression algorithm based on an o�-line heuristic parsing procedure.

Exact repeats are examined in decreasing length order and a copy of repeat is chosen for the

factorization if it avoids overlapping with factors that already belong the factorization.

The next section shows how a repeat is encoded, which allows a precise formalization of

the problem of �nding the optimal compression. In Section 3, the algorithm of the parsing

procedure, which uses a su�x tree of the sequence, is detailed. The time (O(n2)) and space

(O(n)) complexities are stated. In the last section, we report on the execution time and some

results from the study Haemophilus in
uenzae genome [10]. This section also illustrates why

a positive compression outcome assesses the signi�cance of the repeats found.

2 Coding of repeats and optimal compression

In this section, the problem of optimal compression by encoding of repeats is precisely pre-

sented and de�ned. Its NP-completeness is also stated. Though we avoid technical details,

su�cient precisions about the coding is given in order to explain the heuristic of our parsing

procedure.

We use compression as a way to detect if some repeats in the sequence are signi�cant.

The answer is given by the comparison of the lengths in bits of the encoded and original

description of the sequence. As DNA is built with 4(= 22) possibles bases, each of them

might be encoded over 2 (the exponent) bits. Therefore when measured in bits, the original

DNA sequence's length equals twice its length in bases. Any encoded version of a sequence

3One might be surprised because negative outcomes are rare in the usual compression of text or program �les

on a computer disk. But this is not a contradiction, it just \tells", what is obvious, that the �les compressed are

not random. Simply, the algorithms used in those cases are specialized for those types of texts. They \know"

the characteristic structures that makes them non random, they look for them and achieved compression.

is produced in a binary format. This allows to compare the length of both descriptions, and

implies the following formulae for the compression gain: gain = original size� encoded size,

and rate: rate = 1 �
gain

original size
Before looking at the overall problem, we have to describe i) how a single repeat can be

and is encoded, ii) how a combination of several repeats is encoded, i.e. how the encoded

sequence is written. From now on, some de�nitions are required. A string or word s is a

suite of letters taken from an alphabet A, e.g. a DNA sequence is a string over the alphabet

fA;C;G; Tg. A substring of s is a suite of consecutive letters that occurs in s, while a factor

is a positioned occurrence of a substring in s. A repeat of s is a substring which has several

di�erent occurrences in s; its length is the substring's length. A code is a string over the

binary alphabet. jxj denotes the length of x if x is a string and the cardinal of x if it is a set.

2.1 Encoding of a single repeat

A repeat may have several occurrences, but for the sake of clarity we consider in this sub-

section one with only two occurrences. We mentioned that the encoding of a repeat is achieved

by replacing its rightmost occurrence by a pointer to its leftmost one. The latter is called

the source occurrence and the former the target occurrence. Two important issues are: What

informations must be enclosed in this pointer so that the decompression algorithm can rebuild

the original sequence from the encoded sequence? How is each item of information precisely

coded?

l: length of A

A

p: beginning position of A

(p, l, o)

o: offset of A’

A’

code for A’:

S

Figure 4: Encoding of an occurrence of a repeat.

As shown in �gure 4, the code for the target occurrence A0 is a triplet (p; l; o) formed

by: p the beginning position of A, l the length of the repeat and o the o�set of the target

occurrence. Each of these are integer items. To encode those integers, we chose to use the

Fibonacci code4 [3].

During decompression, the piece of code for l must be read and distinguished from those

for p and o. In other words, when reading the suite of 0 and 1 from the encoded sequence, the

decompression algorithm must delimit the code for each item. The Fibonacci code ful�lls this

constraint because it is self-delimiting; moreover, it is also one of the most economic codes to

have this property [9].

Characteristics of DNA repeats imply that all these items may take their value in a very

broad subset of the integers. Clearly, items p; l and o could be nearly as large as the sequence

itself. As we do not know an a priori distribution of those values, nor do we know the length

of the sequence in advance, our integer encoding should encode any integer. Thus, a �xed-size

code cannot be used, and with a variable-size code it is logical to assign short codes to small

integers. The length of the Fibonacci code grows logarithmically in function of the integer to

encode. As the items to encode do not exceed n, the size of a pointer code is in O(log(n)).

4The Fibonacci code takes an integer as input and produce a binary representation of it. Instead of the

powers of two in the natural binary representation, the Fibonacci numbers are used as \base" to write the

binary encoding.

2.2 Encoding of a combination of repeats

A combination of repeats or factorization of the sequence is a set of factors which are all a

target occurrence of some repeat and do not overlap with each other. For each target, the

corresponding source occurrence is known. Note that there is no constraint on the overlapping

of sources with themselves nor on sources with targets5.

Figure 5 shows an example of a sequence encoding: the �rst line displays the source

occurrences of the repeats, the second shows the factorization with the target occurrences

and the third one gives the code (in a non binary representation) and its meaning. Portions

of the sequence which are not covered by a target (the black segments denoted d; e; f; g; h)

are concatenated in their order of appearance and form the remaining sequence. The latter

is encoded by replacing each base by its two bits code. The binary encoding of the whole

sequence is made of two distinguishable parts: the code of the ordered list of pointers (one

pointer per target in the factorization) and the code of the remaining sequence6. So the

\pointer part" is simply the list of the code for each pointer in left-to-right order, preceded

by the Fibonacci code of the number of pointers (this serves as the self-delimitation of the

list.) A target factor which is coded by a pointer as shown in Section 2.1 is also called an

encoded zone.

code
code(s) = 4;(p2,l2,o1);(p1,l1,o2);(p1,l1,o3);(p3,l3,o4);code(d e f g h);

meaning: #zones, code(B’), code(A’), code(A’’), code(C’),code(remaining sequence)

occurrences

factorization

p3p2
p1

l1 l2 l3

o1 o2 o3 o4

A B C

C’A’B’ A’’d e f g h

source

Figure 5: Encoding of a factorized sequence.

Gain of an encoded zone.

We de�ned earlier the compression gain of the sequence. Now the gain of a single encoded

zone also has a meaning: it is the number of bits saved by the encoding of the target. I.e., the

di�erence of the lengths in bits between i) the code of the factor in the original description (2

bits per bases) 2 � l and ii) the code of the pointer that replaces it: jcode(p; l; o)j (we neglect

the increase in the number of targets in the factorization.) We see that the gain of a zone is

of the form O(l) � O(log(n)). Then the length of the factor is the principal parameter that

governs the gain for a zone and thereby the overall gain for the whole sequence.

2.3 Optimal compression

We have described a coding scheme which takes as input a sequence with a factorization of

it and produces a binary code for it. The problem of the optimal compression of a sequence

is now well de�ned and consists in �nding the factorization which yields the shortest coded

5When a target overlaps a source, then the occurrence denotes a tandem repeat [8].
6The separation of the two parts in the code is just a matter of \format". As each part and each item in a

part must be delimited, it makes no di�erence if they are mixed together or well separated. This format allows

to make further experiments with the remaining sequence alone.

sequence. Many factorizations may give an optimal code for the sequence. For a given

sequence and a given integer K, determining if the shortest encoded sequence is shorter than

K is known to be NP-complete for a coding scheme like ours (cf. theorem 2.3.5, chap. 5 in

[20].)

3 Heuristic factorization algorithm.

As computing an optimal factorization of the sequence is an NP-complete problem, we present

an heuristic factorization algorithm. The choice of the repeats aims at maximizing the com-

pression gain (of a zone) and is based on two genetically sound criteria: the length of the

repeats and the absence of overlap between those repeats. Here follows a description of the

parsing algorithm. It takes as parameter the minimal length (denoted min length) of the

repeats which are considered; a value below log(n) is not recommended (see \Compression

gain of a zone" in Section 2.2.) It returns a factorization as an ordered list of target-factors.

The su�x-tree data structure [8], which is used in the parsing, is presented in appendix A.

The main idea of the algorithm is the following. All repeats exceeding min length (from

now on we write only \repeat") are examined in decreasing length order. The algorithm

considers each putative target occurrence of the current repeat. It selects one if its encoding

does not con
ict with the encoding of an occurrence of a better (longer) repeat, i.e. if it does

not overlap a target occurrence which is already in the factorization.

We proceed as follows. First, we build in O(n) time a su�x tree of the input sequence;

it requires O(n) space. From it, we compute the ordered list of repeats LR: the repeats

corresponding to the factors of internal nodes are inserted in LR. These have two properties:

i) the factor of a node is shorter (indeed a pre�x) than the ones of its children, thus in LR the

children always precede their father; ii) a factor x of a node is \maximal"7: all its pre�xes

which are longer than its father's factor occur at the same starting positions than x, they are

thus never more interesting to encode than x (ex in �gure 7: \caga" is maximal, but \cag" is

not.) This justi�es our choice for LR.

The main loop goes through LR. For any repeat, the list of all its occurrences, denoted

locc, can be obtained by reading the leaves of the subtree rooted by its corresponding internal

node. Assume that once this list is built, it is stored in the internal node; then we compute

the list of the current node by merging the ones of its children.

All factors already inserted in the factorization are kept in another ordered list, denoted

by F , for factorization. At completion, F is the result of the procedure. The factors in F are

ordered according to their beginning position in the sequence. Thus, checking the overlap of

all occurrences of the current repeat with all zones in F can be done in O(n) (because both

lists are ordered.)

Another precaution avoids considering positions where a longer factor has already been

encoded. Once an occurrence is put in F , it is deleted from locc which will be merged to build

its father's positions list. Indeed, an occurrence of a repeat considered later in the course of

the parsing and at the same position can only be shorter and would then overlap the current

target-factor.

A formal description of the Parsing procedure is given in �gure 6. The call of get closest zone

moves curr zone towards the zone which is the closest to curr occ in the sequence. Then over-

lap computes if there is an overlap between those two factors.

Proposition 1 If n denotes the length of the input sequence, the worst-case space and time

complexities of Search Repeats are respectively in O(n) and O(n2).

7The meaning of \maximal" is de�ned in the appendix.

�

�

�

�

Parsing(sequence;min length)

Begin

T = compute ST(sequence)

LR = sort(get list maximal repeats(T;min length))

nninitialize F

F = empty list

nnmain loop: examine all repeats in LR

For all r 2 LR Do

nnget the list of positions of occurrences of r

node(r)! locc = compute list occurrences(node(r))

curr zone = �rst elem(F)

nninit curr occ to the second occurrence, the �rst being the source one

curr occ = next(�rst elem(locc))

While (curr occ 6= nil) Do

curr zone = get closest zone(curr zone, curr occ)

If (overlap(curr zone, curr occ)) Then

curr occ = next(curr occ)

Else

nnput curr occ in F insert(F , curr occ)

tmp = previous(curr occ)

delete(locc, curr occ)

curr occ = next(tmp)

EndIf

Done

Done

nnreturn the computed factorization

return F

End Parsing.

Figure 6: Algorithm of the Parsing procedure.

Proof Let us look at each data structure:

1. The input sequence and its su�x tree T both take linear space [7].

2. LR does not contain all internal nodes of T whose number is necessarily less than n [7].

3. When a repeat r is examined, its list of occurrences positions locc is stored in its node.

But when its father is examined, the locc of its children are removed, merged and the

new locc is attached to the father. Moreover, two nodes, one of which is not the ancestor

of the other, do not share any occurrence position. As the leaves contains all n positions

of the sequence, at any step all locc stored contain at most all the positions of the leaves,

i.e. n. Since each time a factor is selected, its position is deleted and then put into F ,

the union of those lists has a decreasing number of elements (n at the beginning), and

F is its complement to the set of all positions (formally: Card(F)+
P

Card (locc) = n.)

4. Factors in F are longer than log(n) and are not overlapping each other. Thus F contains

a maximum of O(n=log(n)) elements.

We thus have an O(n) space complexity. Compute ST takes linear time [8] and to sort LR

is done in O(n log(n)). Inside the main loop, compute list occurrences merges jAj lists of

occurrences and thus takes at most O(n) steps. The while loop goes through locc and F

which are at most n long, and the computation of the overlap is done in constant time. So

the main loop requires at most O(n) steps and is performed at most n (number of repeats in

Lr) times. We end up with an O(n2) time complexity. As the encoding is linear in n, these

are also the overall complexities. ut

4 Applications and conclusions

We explain �rst why the combination of repeats reported by Search Repeats on a compressed

sequence is signi�cant. This sheds light on how a compression test should be interpreted. In

a second part, we report on two examples of repeats from the application of Search Repeats

to the study of Haemophilus in
uenzae genome.

4.1 Compression and non-randomness

Random sequences can enclose repeats, even arbitrarily long ones. But on average, the size of

their longest repeat is in O(log(n)) [5]. The code for a repeat is also in O(log(n)). Therefore,

on average a repeat from a random sequence does not yield a positive gain if it is encoded.

Shortly, we can say: \random is incompressible". It is known that at most one sequence out of

one million random sequences of length n is compressible of 20 bits or more; a compression of

more than 20 bits is therefore signi�cant. If one inputs a genetic sequence in Search Repeats

and �nds that it is compressed, one can draw the following conclusion: the combination

of repeats detected by Search Repeats would have probably not been found in a random

sequence. And the higher the compression gain, the more unprobable it would be. This is the

reason why compressing is a test of non-randomness (those ideas are developed in [14, 17].)

For the sake of comparison, we give an example of an imaginary DNA sequence and its

compression gain. The unique repeat (12 bp) is very long compared to the sequence length

(40 bp), but the compression rate is nevertheless very low: 5% (especially compared to usual

compression of normal �les where it often reaches 50%.) It denotes �rst that the compression

rate value can be misleading and second what is often the case with genetic sequences: they

do not contain more than 25% of repeats like in our example, and are therefore not very

compressible [18].

s = AGTACATATAGTCGCATACGCTGCAATAGTCGCATACATG

Segment code: \1,(8,12,6),AGTACATATAGTCGCATACGCTGCAATG"

Compression gain/rate: 4 bits (76 bits versus 80 bits), nearly 5% of compression rate

4.2 Application to Haemophilus in
uenzae

The repetitive structure of DNA is particularly interesting to study for long sequences, like

complete chromosomes or whole genomes. We ran Search Repeats on the same Sun Ultrasparc

workstation than for our BLASTN tests with the genome of Haemophilus in
uenzae as input

(1.8 Mbp). In comparison, it took 3 seconds of CPU time instead of more than 8 hours with

BLASTN.

With a minimal size of 19 bp for the repeats, the algorithm replaces 33365 bp belonging

to repeats by 10143 bits of code (for the list of pointers only), which results in a compression

gain of 56577 bits and a compression rate of only 1.55% of reduction. 210 exact repeats were

output ranging in length from 5563 bp to 19 bp. Most of them belong to a cluster. A cluster

is in reality an approximate repeat which encloses several exact sub-repeats, and those occur

together at the same locations in the same order. The table below gives an example of a 4

repeats cluster. For instance, the source occurrences of the �rst two repeats are only sepa-

rated by 1 bp (= 574300� 574298� 1), as well as their reference occurrences; the di�erence

of those o�sets is the phase (with value 0.) It means that they form an approximate repeat

with at most 1 mutation between them but no indels.

Source Target

length begin end begin end phase

65 574234 574298 574399 574463 �

69 574300 574368 574465 574533 0

38 574373 574410 574538 574575 0

101 574412 574512 574577 574677 0

Search Repeats allows to see insertion/deletion of long segments between two subsequent

repeats inside a cluster. This is the case when the o�set between source occurrences is small

and the o�set between target occurrences is as large as the inserted segments (or vice-versa.)

For instance, a cluster in which all except 2 of the 48 repeats are in perfect phase (0 indels)

and the two others reveal each a large insertion of 899 and 4195 bp respectively (in between

the source occurrences.) This approximate repeat of 3:2 kbp is also reported in [12] with the

same insertions (the algorithm used in the one of Leung and al. [13].)

Another example is an approximate repeat of 5563 bp which occurs 3 times as a direct

repeat and 3 times as an inverted repeat (data not shown.) One inverted and two direct

occurrences contain a deletion of a 245 bp. It implies that several duplication events happened

before and after the deletion. This repeats contains genes for various RNAs and are not

reported in [12]. This example raises many questions about the date and the mechanism of

such a duplication.

Conclusion

We presented an algorithm which detects repeats that corresponds to duplication events,

without restriction on the length nor on the spacing of the occurrences. It allows to assert

the presence of large insertion/deletion inside those repeats, which cannot be achieved with

algorithms looking for local similarity. The speed of Search Repeats makes it possible to

analyze complete genomes or chromosomes in very little time.

Acknowledgments: We thank gratefully Herrn Bornberg, Heber, M�uller, Spang and Vin-

gron for commenting the manuscript. �E. Rivals is partly supported by grant 01 KW 9601

of the Human Genome Project from the German Ministry of Research, an MRES allocation

from the French Ministry of Research. This work was also supported the G.D.R. CNRS 1029

and by the \Groupement de Recherches et d'Etudes des G�enomes".

References

[1] Pankaj Agarwal and David J. States. The repeat pattern toolkit (rpt): Analyzing the

structure and evolution of the C. elegans genome. In Proc. of the Second International

Conference on Intelligent Systems for Molecular Biology, pages 2{9, 1994.

[2] Stephen F. Altschul, Warren Gish, WebbMiller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. Journal of Molecular Biology, 215:403{410, 1990.

[3] A. Apostolico and A.S. Fraenkel. Robust transmission of unbounded strings using Fi-

bonacci representations. IEEE Trans. Inform. Theory, 33(2):238{245, 1987.

[4] Alberto Apostolico. The myriad virtues of subword tree. In A. Apostolico and Z. Galil,

editors, Combinatorial Algorithms on Word. Springer-Verlag, 1985.

[5] Richard Arratia, Louis Gordon, and Michael Waterman. An extreme value theory for

sequence matching. The Annals of Statistics, 14(3):971{993, 1986.

[6] Alvis Brazma, Inge Jonassen, Ingvar Eidhammer, and David Gilbert. Approaches to

the automatic discovery of patterns in biosequences. Technical Report 113, Dept. of

Informatics, Univ. of Bergen, Norway, 1995.

[7] E. Mac Creight. A space-economical su�x tree construction algorithm. Journal of the

Association of Computing Machinery, 23(2):262{272, April 1976.

[8] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press,

1994.

[9] Olivier Delgrange. Un algorithme rapide pour une compression modulaire optimale. Ap-

plication �a l'analyse de s�equences g�en�etiques. PhD thesis, Universit�e des Sciences et

Technologies de Lille, 1997.

[10] R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R.

Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, and J. M. Merrick. Whole-genome

random sequencing and assembly of Haemophilus in
uenzae Rd. Science, 269:496{512,

1995.

[11] St�ephane Grumbach and Fariza Tahi. A New Challenge for Compression Algorithms:

Genetic Sequences. Journal of Information Processing and Management, 30(6):875{866,

1994.

[12] Samuel Karlin. Assessing Inhomogeneities in Bacterial Long Genomic Sequences. In

Michael Waterman, editor, Proc. of the First Annual International Conference on Com-

putational Molecular Biology, pages 164{171. ACM Press, 20-23 January 1997.

[13] M-Y. Leung, B.E. Blaisdell, C. Burge, and S. Karlin. An E�cient Algorithm for Identi-

fying Matches with Errors in Multiple Long Molecular Sequences. Journal of Molecular

Biology, 221:1367{1378, 1991.

[14] Ming Li and Paul M.B. Vitanyi. Introduction to Kolmogorov Complexity and Its Appli-

cations. Springer-Verlag, 2nd edition edition, 1997.

[15] Aleksandar Milosavljevi�c and Jerzy Jurka. Discovering Simple DNA Sequences by the

Algorithmic Signi�cance Method. CABIOS, 9(4):407{411, 1993.

[16] William R. Pearson and David J. Lipman. Improved tools for biological sequence com-

parison. PNAS, 85:2444{2448, 1988.

[17] �E. Rivals, M. Dauchet, J-P. Delahaye, and O. Delgrange. Compression and genetic

sequences analysis. Biochimie, 78(4):315{322, 1996.

[18] �Eric Rivals. Algorithmes de compression et applications l'analyse de s�equences g�en�etiques.

PhD thesis, LIFL, Universit�e des Sciences et Techniques de Lille, France, 1996.

[19] Temple F. Smith and Michael S. Waterman. Identi�cation of common molecular subse-

quences. Journal of Molecular Biology, 147:195{197, 1981.

[20] J.A. Storer. Data Compression: Methods and Theory. Computer Sciences Press, 1988.

[21] R.D. Wells and R.R. Sinden. Genome Rearrangement and Stability, volume 7 of Genome

Analysis, chapter De�ned Ordered Sequence DNA, DNA Structure, and DNA-directed

Mutation. Cold Spring Harbor Laboratory Press, 1993.

Appendix A: the su�x tree data structure.

The su�x-tree (ST) is a data structure which stores all factors of a text. It is built in O(n)

time and requires O(n) space. An example is shown in �gure 7. For detailed presentations

see [4, 8] among many articles. The ST is a rooted tree whose nodes represent the di�erent

substrings of the text. It requires that a character not in A is appended to the text in such

a way that any su�x cannot be the pre�x of another one, i.e. all su�xes become unique

substrings. Each leaf is mapped to a su�x (and reversely) and labeled by its beginning

position. Each path from the root to a leaf represents a su�x by the concatenation of the

edges labels on this path. Therefore, paths from the root to successive internal nodes represent

longer and longer pre�xes of this su�x. Two other properties state that i) the �rst letter of

sisters-edges must be di�erent and ii) an internal node has at least two children. This induces

that the lowest ancestor of two leaves represent the longest common pre�x between the two

su�xes. Thus, an internal node is mapped to a repeated substring, but not in a one-to-one

manner: only a maximal8 repeated substring is associated to an internal node. In �gure 7, it

can be seen that \caga" is mapped to a node while \cag" is not. The latter always appears

enclosed in an occurrence of the former. At last, the set of positions of occurrences of a

substring is the set of labels of all leaves in subtree.

c
g

c

c g

a

g

ac

c g

a

$

c
g

a

c g

c g

a c

$

a
$

12

1

10

5

8 3

7 2

11

13

9 4

6

14

Figure 7: The Su�x Tree for the text \acagagcagacac$" where $ is the end-marker. \caga" is a

maximal repeated substring while \cag" is not. In fact, only the �rst letter of an edge label is really

stored, and in a node only a couple of integers giving the position of occurrence and the substring

length are recorded. Occurrence positions of \ac" are 1; 10; 12 and 3; 5; 8 for \ag".

8More precisely, it is a right maximal substring in the ST.

