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Abstract

This paper shows that the problem of �nding a protein side-chain packing is computationally

hard (NP-hard), where the problem is de�ned here as a combinatorial search problem using rotamer

library. Although this result does not suggest a new method, it gives a justi�cation for previous

methods using such heuristics as simulated annealing, neural networks, genetic algorithms, and

Gibbs sampling.

1 Introduction

The protein side-chain packing problem (side-chain packing, in short) is, given an amino acid sequence

and spatial information on the backbone chain (the main chain), to �nd side-chain conformation with

the minimum potential energy. More precisely, it seeks a set of � (�1; �2; � � �) angles whose potential

energy becomes the minimum, where positions of atoms in the main chain are �xed (see Fig. 1). This

problem is important for protein structure prediction because positions of atoms in the side-chains

are not determined directly by the homology modeling approach or the threading approach, and thus

side-chain packing is required as the second stage of these approaches.

A variety of computational techniques have been also applied to side-chain packing. For example,

simulated annealing [8], neural networks [7], genetic algorithms [11], Gibbs sampling [12] have been

applied as well as other heuristic search techniques [1, 3, 9]. Although side-chain packing is a continuous

search (optimization) problem, most methods treat this problem as a combinatorial search problem

using rotamer libraries [1, 4, 10]. Recall that, in a rotamer library, a set of candidates of torsion angles

f�1; �2; � � � ; �kg is associated with each type of amino acids, and each candidate is called a rotamer.
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Figure 1: Side-chain packing is a problem of �nding a set of torsion angles � (�1; �2; � � �) which

minimizes the potential energy where positions of atoms in the main chain are �xed.

In this paper, we prove that the side-chain packing problem using rotamers is NP-hard. Although

this result does not suggest a new method, it is important because it gives a justi�cation for using such



heuristic methods as simulated annealing, neural networks, genetic algorithms, and Gibbs sampling.

Moreover, this result gives a more concrete evidence of the di�culty of the side-chain packing problem

than the arguments based on the size of search space give [3, 8]. Note that it is widely believed that

NP-hard problems do not have polynomial time algorithms [5], and thus using a heuristic method is a

good choice for an NP-hard problem. Moreover, we prove that side-chain packing with perturbation,

which corresponds to a re�nement procedure by MD (molecular dynamics), is also NP-hard.

2 Side-Chain Packing with Rotamers

2.1 De�nition of the Problem

As described in Introduction, side-chain packing is a problem of �nding side-chain conformation with

the minimum potential energy. Although it is a continuous optimization problem, most methods

treat this problem as a combinatorial search problem using rotamer libraries [1, 4, 10]. Since no

formal de�nition is known, here we de�ne the side-chain packing problem with a rotamer library as a

geometric problem.

Let � be the set of amino acids (i.e., j�j = 20). For each amino acid x 2 �, a �xed shape (3D region)

s(x) of the side-chain and a set of rotamers (i.e., a set of possible torsion angles) r(x) = f�1x; � � � ; �
kx
x g

are given preliminary. Note that the axis of rotation is �xed to the line including C� and C�.

Let a = a1 : : : an be an input amino acid sequence. Along with a sequence a, the initial con�gura-

tion (determined by 3D position and Euler angles) of side-chain s(ai) is given for each amino acid ai.

Note that s(ai) can take kai con�gurations determined from r(ai). Let �
j
ai
(s(ai)) denotes the region

of the side-chain of ai when rotamer �jai is selected. Then, the problem is to decide whether or not

there exists a sequence of indices I = (I1; : : : ; In) such that �Iiai(s(ai)) \ �
Ij
aj (s(aj)) = ; holds for all

i 6= j.

Note that this de�nition looks strange since it is de�ned as a geometric decision problem although

the original problem is an energy minimization problem. However, there is no problem since we

consider a hardness result. Note that the original energy minimization problem is much harder than

this decision problem because the potential energy will be +1 if two side-chains intersect.

Although spatial information on the main chain is not considered in this de�nition, the result

can be modi�ed for a case that the main chain is taken into account. In this de�nition, rotamers

on �1 angle (i.e., rotations on C�C� bonds) are only considered, and rotamers on �2; �3; � � � are not

considered since the e�ects of �2; �3; � � � are usually less important than that of �1. Although we could

modify the de�nition and the proof so that rotamers on �2; �3; � � � are taken into account, it would be

complicated, and thus we consider rotamers on �1 angle only.

2.2 Hardness

In this section, we will show a hardness result for side-chain packing. Note that, in the proof below,

we construct a virtual protein structure, in which the shapes of side-chains are far from those of real

proteins. However, we use this construction for the sake of simplicity of the presentation, and it can

be modi�ed so that structures similar to real proteins are constructed.

Theorem 1: Protein side-chain packing with a rotamer library is NP-hard.

(Proof) We use a reduction from 3SAT [5]. Recall that 3SAT is, given a collection C = fc1; : : : ; cmg of

clauses over a set V = fv1; : : : ; vng of variables, to decide whether or not there exists a truth assignment

for V that satis�es all clauses, where each clause consists of three literals. Recall also that a truth

assignment is a function from V to f1(true); 0(false)g, and a clause is satis�ed if at least one literal

(variable or its negation) becomes true. For example, all clauses in C = ffa; b; cg; fa; b; cg; fa; b; cgg are

satis�ed by an assignment a = 1; b = 1; c = 1, but not satis�ed by an assignment a = 0; b = 0; c = 1.
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Figure 2: Placement of side-chains in the proof of Theorem 1.

From an instance of 3SAT, we construct an instance of side-chain packing. In the construction,

we use 6 kinds of side-chains (residues): L (left), R (right), U (up), D (down), N (neutral), T (truth

assignment). For each grid point (i; j) (1 � i � n, 1 � j � m) on XY-plane, we put two side-chains as

in Fig. 2. Although we do not take care of the main chain, we consider a situation that C� atoms are

placed at (i; j;�1) and (i; j; 2). Note that the axis of rotation of each side-chain is the line including

(i; j; 0) and parallel to Z-axis. The construction consists of two parts: truth assignment part and

satisfaction testing part.

First we describe the truth assignment part (see Fig. 3(A)). For each variable vi, we construct m

side-chains Ti;1; Ti;2; : : : ; Ti;m, where the shape of Ti;j is de�ned by

s(Ti;j) = f(x; y; 0)j i� 0:4 < x < i+ 0:4; j � 0:6 < y < jg [

f(x; y; 0)j i� 0:5 < x < i� 0:4; j < y < j + 0:6g [

f(x; y; 0)j i+ 0:4 < x < i+ 0:5; j < y < j + 0:6g:

For each Ti;j , we associate the rotamer set f�0; ��g, where �� means the rotation by � radian on the

line including (i; j) and parallel to Z-axis. Note that, once �0 is selected for some Ti;j , �0 must be

selected for all Ti;k with 1 � k � m. Otherwise, some pair (Ti;k; Ti;k+1) would intersect. Thus, we

consider the following correspondence:

�0 is selected for Ti;j () vi is 1 (true):

Next we describe the satisfaction testing part (see Fig. 3(B)). For this part, 5 kinds of side-chains

L;R;U;D;N are used. Let �i;j , �i;j and 
i;j be the regions de�ned by

�i;j = f(x; y; 1) j i� 1 < x < i; j � 0:5 < y < j + 0:5g;

�i;j = f(x; y; 1) j i < x < i+ 1; j � 0:5 < y < j + 0:5g;


i;j = f(i; y; 1) j j � 0:5 < y < jg:

Then, shapes of Li;j , Ri;j , Ui;j , Di;j and Ni;j are de�ned by

s(Li;j) = �i;j [ f(i; j + 0:4; 0)g, s(Ri;j) = �i;j [ f(i; j + 0:4; 0)g, s(Ni;j) = �i;j ,

s(Ui;j) = 
i;j [ f(i; j + 0:4; 0)g, s(Di;j) = 
i;j [ f(i; j � 0:4; 0)g,

where the rotamer set f�0; ��g is associated with each of Li;j , Ri;j and Ni;j , and the rotamer set

f�0; �2�=3; ��2�=3g is associated with each of Ui;j and Di;j . Thus, for example, ��(s(Li;j)) = �i;j [

f(i; j � 0:4; 0)g.
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Figure 3: Illustration of (A) truth assignment part and (B) satisfaction testing part, where white

circles denote grid points (axes of rotations). Fig. (A) corresponds to an assignment of v1v2v3 = 101.

In Fig. (B), ROW1, ROW2 and ROW3 correspond to vpvqvr = 100, 101 and 010, respectively, where

black circles lie on the plane of z = 0. Note that �0 is selected for vp in ROW1 while �� is selected

for vr in ROW1 because xp;1 = Lp;1 and xr;1 = Rr;1.

From each clause ck, we construct side-chains xi;k (1 � i � n). Let vp; vq; vr be variables appearing

in clause ck, where p < q < r. Then, xp;k, xq;k and xr;k are de�ned by

xp;k =

(
Lp;k; if vp 2 ck;

Rp;k; if vp 2 ck;
xq;k =

(
Uq;k; if vq 2 ck;

Dq;k; if vq 2 ck;
xr;k =

(
Rr;k; if vr 2 ck;

Lr;k; if vr 2 ck;

where v denotes the negation of v. For i =2 fp; q; rg, we let xi;k = Ni;k.

Here, we consider the case of ck = fvp; vq; vrg (i.e., all literals are positive). Note that, in this case,

xp;k = Lp;k, xq;k = Uq;k and xr;k = Rr;k. Then, we can see the following properties must hold in order

to avoid collisions among side-chains:

(i) If �0 is selected for Tp;k (resp. Tr;k), �0 must be selected for Lp;k (resp. Rr;k). Otherwise, �� must

be selected for Lp;k (resp. Rr;k).

(ii) If �0 is selected for Tq;k, �0 must be selected for Uq;k. Otherwise, either �2�=3 or ��2�=3 must be

selected for Uq;k.

(iii) If ��2�=3 is selected for Uq;k, �0 must be selected for Lp;k and Ni;k with i < q.

(iv) If �
2�=3 is selected for Uq;k, �0 must be selected for Rr;k and �� must be selected for Ni;k with

i > q.

From (i) and (ii), we can see that selecting �0 for Lp;k (resp. Uq;k, Rr;k) corresponds to an assignment

of vp = 1 (resp. vq = 1, vr = 1). From (iii) and (iv), we can see that �0 must be selected for at least

one of Lp;k, Uq;k and Rr;k in order to avoid collisions. Thus, ck is satis�able i�. (if and only if) xi;k's

(1 � i � n) do not intersect.

For the other cases (i.e., cases of ck 6= fvp; vq; vrg), similar properties hold and thus ck is satis�able

i�. xi;k's (1 � i � n) do not intersect.

Therefore, there exists an assignment of rotamers to side-chains which does not cause collisions

among side-chains i�. there exists a truth assignment satisfying all clauses in 3SAT.

Since the above construction can be done in polynomial time, the theorem holds. 2



Note that, in the above proof, rotamer 
ip may propagate to the very distant rotamers. But, such

a phenomenon may occur in a real protein because there is a case that substitution of one residue

drastically changes 3D conformation of a protein.

3 Side-Chain Packing with Perturbation

Although the conformation of the main chain is �xed in the above, better side-chain packing may be

obtained if the conformation of the main chain and side-chains is perturbed. Indeed, in many methods

based on homology modeling, protein conformations are re�ned by perturbing both the main chain

and side-chains using MD (molecular dynamics) [4, 9]. However, MD programs do not always �nd

global optimals. Thus, we consider here a problem of protein side-chain packing with perturbation.

As in Section 2.2, we ignore the main chain and consider side-chains only, and we do not consider

the potential energy but consider whether or not collisions are caused. Moreover, we do not consider

rotamers and we assume that the initial con�guration of side-chains is �xed, in which side-chains may

intersect. Then, we de�ne side-chain packing with perturbation as a geometric problem: given real

numbers � and �, shapes of side-chains and an initial con�guration, to �nd a con�guration such that no

two side-chains intersect, where each side-chain can be translated by at most � and can be rotated by

� 2 [��; �] on the centroid. Although a lot of studies have been done for geometric packing problems

[2], we do not know a result which can be directly applied to this problem.

Theorem 2: Protein side-chain packing with perturabation is NP-hard.

(Proof) We use a reduction from PARTITION [5]. Recall that PARTITION is, given a set of integers

S = fs1; : : : ; sng, to decide whether or not there exists a subset S0 � S such that
P

si2S0 si =P
sj2S�S0 sj . In this proof, we consider a special case that S0 contains exactly one of s2i�1; s2i for all

i since this case remains NP-complete [5].

From such an instance of PARTITION, we construct an instance of protein packing with pertur-

bation. For the simplicity, we consider a two-dimensional case where only translations within � are

allowed. However, the proof can be modi�ed for a three-dimensional case with translations and (small)

rotations.
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Figure 4: Constructions used in the proof of Theorem 2: (A) construction of a wall, (B) �nal con�g-

uration of the rectangles.

First we construct a wall (see Fig. 4(A)), Let W1 and W2 be rectangles of width 2L and height L,

where we assume that edges are not included in it. We denote the position of rectangle by the position

of its centroid. Initially, W1 and W2 are placed at (�L + �; 0) and (L � �; 0) respectively, where we

assume L > 2�. Then, W1 and W2 must move to (�L; 0) and (L; 0) in order to avoid the collision.



Using four such pairs, we construct a wall by which rectangular region f(x; y)j0 � x � B;�A � y � Ag

is surrounded (see Fig. 4(B)), where A =
Pn

i=1 si and B = (n+ 1)A=2.

From each si, we construct a rectangle Ri of width A + si and height A (see Fig. 4(B)). In the

initial con�guration, both R2i�1 and R2i are placed at ((i� (1=2))A; 0). Finally, we set � = A.

Then, it is easy to see that there exists a con�guration which does not cause collisions i�. there

exists a subset S0 for PARTITION. Since the above construction can be done in polynomial time, the

theorem holds. 2

Although rectangles are used in the above proof, rectangles can be replaced with more molecular-

like shapes. However, we do not know whether or not they can be replaced by spheres.

4 Concluding Remarks

In this paper, we have proved NP-hardness results for side-chain packing with rotamers and side-chain

packing with perturbation. Note that, in these proofs, we did not use a model of real proteins but

used simpli�ed arti�cial models although our models could be modi�ed in some extent, where a model

includes shapes of residues and a rotamer library. Since our models are di�erent from a model of real

proteins, there may exist a polynomial time algorithm for a real model. However, if such an algorithm

exists, it must be specialized to the real model (otherwise it can be applied to the problems de�ned

in this paper). Therefore, it seems di�cult to develop a polynomial time algorithm for each problem

even if a real protein model is used. Of course, robust proofs (i.e., proofs which can be applied to wide

variety of models) [6] are more desirable and should be studied.
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