
A Multi-Agent System for Exon Prediction in Human

Sequences

Laurence Vignal 1 Fr�ed�erique Lisacek 2

vignal@lirmm.fr Frederique.Lisacek@genetique.uvsq.fr

1 Laboratoire d'Informatique, de Robotique et de Micro�electronique de Montpellier

161 rue Ada, 34392 Montpellier Cedex 5, France

2 Universit�e de Versailles Saint-Quentin,

45 avenue des �Etats-Unis, 78035 Versailles, France

Abstract

Given the problem of identifying exons in new genomic DNA, the sketch of a resolution process

was drawn using sequence data and models of site/signal recognition. A multi-agent architecture

is used to validate these models and test hypotheses on the chronology of events involved in gene

splicing. Information is channelled through a hierarchy of agents. Each type of agent is the result

of a successful step in the resolution process. The system does not rely on the compositional bias of

coding sequences which is a key feature of current computer methods.

1 Introduction

The splicing of human genes is known to take place in a large molecular complex called spliceosome,

containing close to one hundred proteins as well as �ve small RNA species. It involves a collection of

site recognition mechanisms. Such mechanisms are not yet fully understood, if known at all, which

makes the precise chronology of events resulting in the splicing of introns and the ligation of consecutive

exons, quite di�cult to determine.

Even though each known mechanism involved in gene splicing is rather easy to describe, its relative

contribution to the overall process is still unclear. Consequently, the problem can be partitioned into

sub-problems but, the resolution process is certainly not straightforward.

The automatic identi�cation of exons is usually based on the coding properties of exonic sequences.

Current computer methods (see [4] for review) rely on the de�nition of a measure of codingness

of a sequence, to distinguish between coding and non-coding regions in genomic DNA. Statistical

regularities found in exons depending on codon usage, compositional bias, periodicity, etc, are used

to characterise sequences. But, these methods cannot account for a number of recently observed

phenomena such as alternative splicing or non-coding exons [8].

In contrast to previous approaches, the method presented here, is designed only to deal with the

available information when splicing occurs. It is performing as well as current programs but with

minimal information, that is, sequence patterns. Preliminary results were encouraging [16].

Gene �nding methods are often seen as splicing simulation devices. They include a training phase

and require re-training when the testing phase is not satisfactory. The capacity of integrating new

or modi�ed information without re-training, is the main characteristic of distributed AI systems [5].

Besides, decisions reached can be traced and explained, while missing or erroneous information can

be dealt with.

The multi-agent architecture is used here as a mean to validate models and test hypotheses on the

chronology of events involved in gene splicing. Two models have been introduced to simulate splicing:

� The scanning model of the recognition of an acceptor site [11] states that no AG dinucleotide

occurs between the branch site and the invariant AG of the acceptor site. Indeed, experiments



show that if an AG dinucleotide is introduced between the branch site and the invariant AG of

the acceptor site, it is used as a new acceptor site.

� The exon de�nition model [1] states that exons are recognised as a whole and serve as a reference

for de�ning a gene. It shows that an acceptor site is �rst recognised, followed by a search for

a donor site within the next 300 nucleotides. The occurrence of both a 3' and a 5' splice site

in the correct orientation within these boundaries is a requisite for the formation of stable exon

complexes.

The principles of the method are �rst presented, then the detection of splice junctions and e exons

is detailed. Some results are given and commented.

2 Multi-agent architecture

The multi-agent architecture is organised in layers and sensitive to chronology. Information is chan-

nelled through a hierarchy of agents. Raw information reaches higher level agents only after being

processed by so-called basic agents. Each type of agent is in fact, the result of a successful step in the

resolution process.

Given the problem of identifying exons in new genomic DNA, the sketch of a resolution process was

�rst drawn in collaboration with biologists. Originally, the challenge was to check whether sequence

data and models of site/signal recognition, provided enough information to simulate splicing.

An agent is described by a list of characteristics. Basic agents were set to be donor and acceptor

agents. For instance, a basic donor agent is characterised by a position in the sequence and a speci�c

pattern surrounding the invariant GT. Basic agents represent the initial knowledge of the system.

Knowledge is updated and revised through processes of communication between agents. Two main

processes are involved :

� Selection of agents (discarding irrelevant information)

� Co-operation between agents (merging information from distinct sources)

In the resolution process, assumptions are re�ned by modifying characteristics of agents and de�n-

ing agents of higher levels. In the selection mode, new characteristics are added to the list associated

with an agent. The knowledge of the system is enriched after selection. This �ltering operation is

meant to keep relevant agents. For instance, basic donor agents are selected upon similarity to con-

sensus such that the re�ned donor agent is characterised by a position in the sequence, a speci�c

pattern surrounding the invariant GT and a score of similarity of this signal to consensus.

In the co-operation mode, agents are merged and so are the associated lists of characteristics. For

instance, when donor agents co-operate with acceptor agents, they give rise to group of exons agents

characterised by relevant acceptors and donors.

The so-called breeding of agents representing the resolution process is summed up in �gure 1. The

order in which selection and co-operation operations are performed, re
ects the sketch of resolution

set earlier. It can be altered whenever priorities need be modi�ed, but, a the same time, the relevance

of the model is tested.

Depending on the instantiation of constraints, agents are more or less informative; information is

quanti�ed by scoring functions. Simple operations are implemented for score calculations.

The program is written in an actor language. The system was called AMELIE (acronym of Multi-agent

Architecture for the Explanation and the Localisation Intron-Exon).

2.1 Learning

The LEGAL system [7] is used to identify regularities in sequences surrounding sites. The length of

signals to be recognised was determined after a number of trials: nnnGTnnnnnnn for donors and
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Figure 1: Multi-agent system instantiation

nnnnnnnAGn for acceptors were found to be optimal which is consistent with results found in [3].

Rules governing the occurrence of nucleotides in such signal sequences are generated and used for the

de�nition of a similarity measure. A sequence is recognised as a signal depending on the number and

the quality of rules which are satis�ed. Thresholds are modi�able.

The use of counter-examples was subject to various trials, depending on the de�nition of non-site.Non-

sites were automatically generated as sequences not verifying the acquired rules, or given more of a

biological meaning, as sequences found inside exons. In practise, the two strategies yielded similar

results.

Introducing counter-examples turned out to be an e�cient mean of reducing the rate of false-positive

without damaging the quality of recognition. In the case of donor sites, for instance, the number

of false-positive drops from 12 to 6 per kb. Sequences in the training set were divided into classes

depending on the G+ C content. Four classes are de�ned :

� class 1 : sequences containing from 20 to 39% of G+ C

� class 2 : sequences containing from 40 to 49% of G+ C

� class 3 : sequences containing from 50 to 59% of G+ C

� class 4 : sequences containing over 59% of G+ C

Results and detailed values given below correspond to the case of sequences of class 2.

2.2 Detection of Donor sites

GT is the invariant sequence of the donor site. Conserved nucleotides occur downstream GT, on the

side of the intron and upstream GT, on the side of the exon. Di�erent types of constraints are acting

on each side but, these sequences are covariant: nucleotides may be conserved on both sides and if

not, either the intronic sequence is weakly conserved while the exonic sequence is strongly conserved,

or conversely.

Practically, the di�erent cases depend on the presence of G at speci�c positions. Three distinct

environments of the consensus were observed:
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(1) GGT NNG in 60% cases approximately

(2) GGT in 20% cases approximately

(3) GT NNG in 20% cases approximately

The LEGAL system is used to identify regularities in distinct sets of examples of these three types

of donor sites (116 examples for type (1), 21 for type (2) and 29 for type(3)). Three sets of rules are

obtained (denoted R1, R2, R3). Figure 2 shows how the identi�cation of donor sites is split into three

sub-problems.

As mentioned above and seen on Figure 1, when scanning a new sequence, a potential donor agent

PD is simply determined by the position in the sequence and the type of a consensus (1 to 3). Then,

a LEGAL donor agent LD is selected if enough (threshold value) rules of the corresponding Ri are

veri�ed.

Donor agents D are selected among LD agents, upon the existence of a G-rich sequence to be found

7 to 50 nucleotides downstream the donor site.

Score calculations are performed for each Donor agent, as linear functions of the percentage of similarity

to learned signals and the percentage of G downstream the donor site.

2.3 Detection of Acceptor sites: implementing and validating the Scanning Model

AG is the invariant sequence of the acceptor site and each occurrence of such dinucleotide in the

sequence, is tested. Acceptor agents are built in a multiple step fashion. Learning is performed with

a set of examples of signal sequences and rules are derived from a single set of 167 examples. These

rules are combined to other characteristics to achieve the selection of agents. These characteristics rely

on the hypothesis demonstrated in the scanning model , namely: if an AG dinucleotide is introduced

between the branch point and the invariant AG of the acceptor site, it used as a new acceptor site.

More e�ects on modifying sequences upstream AG between the branch point and the pyrimidine

stretch, modifying the pyrimidine stretch, etc, are studied in [11], to establish other restrictions on

sequence length and distances between signals. Figure 3 shows the details of the procedure based on

these constraints.

First, a Y-rich sequence is searched upstream the AG. Practically, nucleotides in the segment

de�ned by the 14th and the 5th nucleotide before AG should be a majority of pyrimidines.

A weight matrix is used to determine a potential branch point; this signal is supposed to be �ve

nucleotides long as in [10] and [9]. Following the hypothesis of the scanning model , no AG dinucleotide

occurs between the branch site and the invariant AG of the acceptor site. Consequently, contradicting

sequences are discarded. In parallel, learning-based rules are used to re�ne the selection of signal

sequences.

The �nal selection yields 84% success for exon prediction in short genes and 88% for long genes, with

less than 4 false-positive per kb.

As mentioned above and seen on �gure 1, when scanning a new sequence, a potential acceptor agent
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PA is simply determined by the position in the sequence and the quality of the pyrimidin stretch.

Then, a LEGAL donor agent LA is selected if enough (threshold value) rules are veri�ed.

Acceptor agents A are selected among LA agents, upon the implementation of the procedure described

above.

Score calculations are performed for each Acceptor agent, as linear functions of the percentage of

similarity to learned signals, the percentage of pyrimidine upstream the acceptor site and the quality

of the branch point determined by the weight matrix mentioned earlier.

2.4 Detection of Exons: implementing and validating the Exon De�nition Model

One would think that since introns are to be removed, their sequence is �rst identi�ed and then,

spliced. But, in human sequences a donor site can be far apart from the next acceptor sites (1kb on

average and up to 35kb) so that the ligation of exons is made di�cult.

In contrast, exon sequences are short (130 bp on average and less than 300 bp with rare exceptions)

which suggests that acceptor sites are �rst recognised. In fact, length is a determinant factor in site

identi�cation and the exon de�nition model [1] states further that exons represent units in the recog-

nition process.

Two dependent factors are critical in the choice of a donor site to pair with a given acceptor site,

namely, the distance between sites and the homology to consensus sequences. In vitro, sequences

closer to consensus are usually chosen to favour a better binding to the U1-SnRNA, especially when

the distance between sites is short [6]. On the contrary, if the distance is large, non consensus se-

quences can be chosen to the detriment of consensus ones.

Figure 4 shows how exons are put together. Exons are identi�ed through a co- operation process

between the previously built acceptor and donor agents. Figure 1 illustrates how groups of exons are

de�ned as the result of merging one acceptor agent with corresponding donor agents.

Precedence and length determine this correspondence: each potential acceptor site, A, is paired

with potential donor sites, D1, D2,. . .Dn, within the next 300 nucleotides with a minimum of 15
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Figure 4: Building exons with the exon de�nition model.

nucleotides separating sites A and any Di. Since exons are being built, donor sites are downstream

acceptor sites.

The score of an exon is the product of scores of the acceptor and donor sites modi�ed by a log factor

of the length of the exon.

Usual rules depending on the reading frame or the presence of a STOP codon, are irrelevant to

determine how compatible exons are, in this scheme. Instead, an experimentally proven rule de�nes

the compatibility between exons. Indeed, according to [12], there are at least 51 nucleotides separating

the donor site from the branch point corresponding to acceptor site of the next exon. Such a rule

is implemented (the minimal distance is set to 60). Figure 5 shows an example of how it is applied.

Finally, preference is given to exons with higher scores.
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Group of Exons agents are merged with respect to compatibility to give rise to exon agents and a

Partial Gene is formed as a result of the co-operation between exon agents.



GeneF inder GRAIL3 GeneParser

Codingness Preference of triplets Preference of hexamers Preference of hexamers

Preference of and frame-dependent and frame-dependent

oligonucleotides hexamers hexamers

Markov model Preference of

octanucleotides

Splice sites yes and no Distinct Statistical tests

neural nets using search matrix

Branch point Fixed no no

Pyrimidin Fixed Some no

stretch variability

poly-G Number of G, GG no no

and GGG

G+ C no Of isochore 3 classes ( rich, medium

content Of potential exon and low G+ C)

Exon no Exon length Exon and intron length

length distribution distributions

Other Similarity score

features using BLAST

Scoring Discriminant function Neural net Neural net

Gene Compatible reading frames Compatible reading frames No overlap

construction Minimal intron length Minimal intron length between intron and exon

constraints No STOP codon in frame No STOP codon in frame

Restrictions No alternative splicing No alternative splicing No alternative splicing

No STOP codon in frame No STOP codon in frame No genes exceding

AG and GT consensus YAG and GT Consensus 15000 bp

Table 1: Features of the main gene structure prediction systems

3 Results

The accuracy of results di�ers according to the G + C content of sequences. As remarked upon for

other methods, the success rate of recognition is lower with G+C-rich sequences. In other cases, the

success rate ranges between 80 and 90% with less than two false positives per kilobase [17].

Our understanding of a better prediction for long genes relies on a simple observation: the size of

introns is, on average, larger in long genes than in short ones and conversely the size of exons is

relatively constant in both cases.

Figure 5 shows how the method performed on the hspaia gene.

4 Discussion

The development of large sequencing projects and more speci�cally, e�orts put into sequencing the

human genome, stress the need for the automatic identi�cation of exons.

In the most popular methods, the so-called codingness of a sequence is estimated with the composi-

tional bias of coding sequences. This bias is observed in words composing exon sequences. Hexamers

are considered in the Markov model de�ned in GenMark [2] and in GRAIL3 [15], while both hex-

amers and octamers are tested in the discriminant analysis used in [14], and the neural net of [13].

No such feature was taken into account in the method presented here. More generally, table 1 and 3

show which of the main features of current methods are common or distinct to those used in AMELIE.



As far as the quality of results is concerned, AMELIE is comparable to most methods. Considering

it does not use coding properties, AMELIE does as well with less but more targeted information. In

fact, it is improved if coding properties are added (data not shown). Performances are compared in

table 2.

Method

GRAIL

GeneFinder

AMELIE

Exons All False per Kb

42% 73% 0.3

71% 79% 0.1

48% 71% 1

Exons All False per Kb

48% 81% 0.25

62% 84% 0.15

54% 90% 1.3

Table 2: Comparison with GRAIL and GeneFinder. Results on respectively short genes and long

genes. Exons gives the percentage of exons totally predicted and All gives the percentage of exons

totally or partially predicted.

Moreover, the speci�city of the multi-agent scheme is that the performance is explainable. As-

sumptions are explicitly con�rmed or contradicted by AMELIE whereas neural networks such as [15]

[13] do simulate splicing but cannot easily argue a decision.

The scanning model provided a good basis for the detection of acceptor sites. Improvement is always

possible but, results are rather satisfactory.

On the other hand, the exon de�nition model is incomplete [1]. Splicing enhancers are involved when

signals are weak. These sequences are located either in exons or in introns and provide a binding

site for proteins stimulating or stabilising the spliceosome. These intermediary stages of the splicing

process are not yet elucidated. Such a lack of information can partly justify some errors made by the

system. Furthermore, the compatibility between exons is determined by one rule only which turns out

to be insu�cient and still yields too many false-positive.

5 Conclusion

A novel approach to the problem of gene identi�cation was presented. Further work is needed in

re�ning the computer method and mostly in gathering information on splicing mechanisms. The

direction for future improvement is set by the performance of the system as weaknesses of the decision

process can always be explained.
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