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Abstract

Motivation: Several methods in genetic information have recently been developed to estimate clas-

si�cation of protein sequences through their sequence similarity. These methods are essential for

understanding the function of predicted open reading frames (ORFs) and their molecular evolu-

tionary processes. However, since many protein sequences consist of a number of independently

evolved structural units (we refer to these units as components), the combinatorial nature of the

components makes it di�cult to classify the sequences.

Results: This paper presents a new method for classifying uncharacterized protein sequences. As

the measure of sequence similarity, we use similarity score computed by a method based on the Smith-

Waterman local alignment algorithm. Here we introduce how this method cope when sequences have

multi-component structure. This method was applied to predicted ORFs on the Escherichia coli

genome and we discuss the algorithm and experimental results.
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1 Introduction

Recent advances in computer technology have led to an exponential growth of DNA sequence analysis

in genetic information. This technology has permitted the development of new statistical methods

for understanding the unknown function of open reading frames (ORFs). Many proteins consist of a

number of independently evolved structural units (so called modules [1] or domains). The functional

diversity of protein sequences is partly due to the vast number of possibility to arrange a �nite number

of these basic units in di�erent combinations. In this paper we refer to these units as components

since we regard them as the elements to express the function of proteins. The combinatorial nature of

proteins is major di�culty when one attempts to classify protein sequences on the basis of sequence

similarity.



The detection of similarities between independent sequences is often the �rst step in the identi�ca-

tion of relevant features in newly determined DNA sequences or their translated amino acid sequences.

Many di�erent programs have been developed to search for similarities between biological sequences.

Generally, methods for classifying protein sequences are basically categorized into two groups.

1. Similarity-based classi�cation : clustering sequences with their pairwise similarities. This is

widely used for numerical data analysis and su�cient to analyze similarities between sequences

that can be aligned over their entire length. However, if the sequences have combinatorial

arrangements of several components such as two component system proteins [2], this approach

may only detect their regional similarities rather than the similarities of overall lengths in the

sequences. In this case, the classi�cation based on similarity scores cannot determine whether a

set of sequences share a common component or they have overlapped sets of di�erent components

(e.g., for three sequences P , Q and R and two components a and b, P has a, Q has b and R

has both a and b). In the latter case, the method may classify some sequences that share no

common components (e.g., P and Q) into the same group through multi-component proteins

that have two or more independent components (e.g., R).

2. Pattern-based classi�cation : detecting commonly shared patterns. This approach piles up

the regional similarities among protein sequences into statistically signi�cant character patterns

and then classi�es the sequences with their patterns into groups [3, 4]. Thus the method can

classify multi-component proteins into two or more di�erent groups simultaneously (e.g., fP;Rg
and fQ;Rg in the previous example). However, since the method explores frequently-occurred

�xed-length patterns (so called blocks), it may not detect some components that only appeared

in a small number of sequence groups. Also since the method does not allow gaps in the blocks

usually, it may not detect weakly conserved components in distantly related proteins.

Here we introduce a method that combines these two approaches. Our method performs local

alignment for every pair of sequences and extracts a set of regions from the alignment results, which

are candidates of the components. Then the method carries out local alignment again between each

of the component candidates and each of the sequences for screening spurious component candidates

and analyzes the correspondence of the components to the sequences.

Basically our method is regarded as a pattern-based method but it utilizes similarity informa-

tion generated by pairwise local alignment to obtain component candidates. Also, since the local

alignment in our method is based on a rigorous dynamic programming method (the Smith-Waterman

algorithm [5]), it allows gaps (i.e., insertions and deletions) in components. This is useful for detecting

components from distantly related proteins.

2 Algorithm for detecting components

2.1 De�nitions

The followings are some de�nitions to formulate the sequence classi�cation problem.

De�nition 1 (Protein sequence) A protein sequence P = p
1
p
2
� � � pn is a sequence such that each

pi (1 � i � n) is a character over an amino acid alphabet
P

= fA, C, D, E, F, G, H, I, K, L, M, N,

P, Q, R, S, T, V, W, Yg.

In the following de�nitions, P = p
1
p
2
� � � pn and Q = q

1
q
2
� � � qm denote two protein sequences of length

n and m, respectively.

De�nition 2 (Alignment) An alignment of P and Q is produced when null elements `�' are inserted

into P and Q so that the resulting sequences P � and Q� have the same length. Here the sub sequence

of P � or Q� whose elements are not equal to `�' is the original sequence P or Q.



De�nition 3 (Global alignment and global similarity) The global alignment of P and Q is an

alignment of which similarity (global similarity) is formulated as follows:

G SIM(P;Q) = max
LX

i=1

�(p�i ; q
�

j );

where p�i and q�i are the i-th element of the resulting sequences P � and Q�, respectively, whose lengths

are the same L and �(p�i ; q
�

j ) denotes similarity on the alphabet �[ f `�' g (amino acid alphabet with

the null character).

De�nition 4 (Local alignment and local similarity) The local alignment of P and Q is an align-

ment of which similarity (local similarity) is formulated as follows:

L SIM(P;Q) = maxf0; G SIM(P [i::j]; Q[k::l]) : 1 � i � j � n; 1 � k � l � mg;

where P [i::j] and Q[k::l] are subsequences of P and Q, respectively.

In this paper, we use a procedure for generating a speci�ed number of local alignments for possible

subsequences in the descending order of local similarities. The procedure is formulated as follows:

De�nition 5 (Local alignment procedure) Given two sequences, P and Q, and a positive integer

N , the procedure

L ALIGN(P , Q, N : Sim(k), Idt(k), sP (k), eP (k), sQ(k), eQ(k)) (1 � k � N)

generates at most N local alignments whose local similarity is Sim(k) obtained from a subsequence

of P ( starting from sP (k) and ending at eP (k) ) and a subsequence of Q ( starting from sQ(k) and

ending at eQ(k) ). Here Idt(k) is the ratio of identical amino acids in the k-th local alignment.

2.2 Description of the component-based grouping algorithm

To determine the components based on grouping, we developed a new algorithm. Our method consists

of the following three steps.

2.2.1 [Step 1.] all-versus-all comparison of the sequences by local alignment

In order to express homology and sequence information, all-versus-all local alignment is carried out

(see the pseudocode described below). This step picks up information such as the similarity score, the

amino acid identity and the length of the homologous segments.

(1-1) foreach Seq(i) in given sequences,

(1-2) foreach Seq(j) in given sequences,

(1-3) Compute local alignment between Seq(i) and Seq(j) and output segments whose length,

score and amino acid identities are at least given threshold values; SegLen, Sim and

Idt, respectively.

Figure 1 explains that Seq(i) has homologous segments against each of the other sequences and

one understands how complicatedly those segments overlap each other.



seq[1]

seq[i]

seq[n]

seq[n-1]

alignment

Step 1

Figure 1: Detecting homologous segments between a sequence, Seq(i), and each of the other sequences,

Seq(j) (1 � j � n, i 6= j).

2.2.2 [Step 2.] Construction of component candidates

In this step, overlapping alignment will be pruned down with the rest of the alignments starting

positions and ending positions (see the pseudocode described below). If the length of an interval (i.e., a

component candidate) is below the threshold cuto� value, that component candidate is removed. Here

the cuto� value is a program parameter. This value forbids the generation of too small components

and governs the resolution of the components. The generated components are used for the rest of the

process. Figure 2 shows what happens to Seq(i) before and after Step 2.

(2-1) Extract all intervals between either of any starting or ending positions of the segments that

are output in Step 1.

(2-2) Pick up the intervals whose length is at least given threshold ComLen and store the intervals

as Com(i; j) (the j-th component candidates in a sequence Seq(i)).

2.2.3 [Step 3.] Analyzing the correspondence of component candidates to sequences

This step is composed of three substeps (see the pseudocode described below). Here grouping is

carried out on the basis of component information. In Step 3.1 the similarity score of each component

candidate and itself (hereafter, self-similarity score) is computed ((3-2) and (3-3)). After this process,

local alignment is carried out again between components and the rest of the protein sequences.

Step 3.1 (Computing self-similarity scores for all intervals)

(3-1) foreach Com(i; j) in all component candidates that are output in Step 2,
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 (if the length < threshold value)

Component list

com[1_1]
com[1_2]
com[1_3]

com[i_j-1]
com[i_j]
com[i_j+1]
com[i_j+2]

com[n_m]

Figure 2: Construction of component candidates Com(i,j) (the j-th component in Seq(i))

(3-2) Extract a subsequence, Subseq(i; j), of a sequence Seq(i) corresponding to Com(i; j).

(3-3) Compute similarity score between Subseq(i; j) and itself and set it to be SimSelf(i; j).

Step 3.2 (Grouping relevant components)

(3-4) foreach Com(i; j) in all component candidates that are output in Step 2,

(3-5) Extract a subsequence, Subseq(i; j), of a sequence Seq(i) corresponding to Com(i; j).

(3-6) foreach Seq(k) in given sequences,

(3-7) Compute local alignment between Subseq(i; j) and Seq(k) and output segments

whose overlap length is nearly equal to the length of Subseq(i; j) (the di�erence

is within given threshold LenDiff), whose score is at least SimSelf(i; j) � SimDiff

(a given scale parameter) and whose amino acid identities is at least given threshold

IdtDiff .

(3-8) Compute self-similarity scores for these segments the same as described in Step 3.1.

(3-9) Grouping these segments and Com(i; j) into a group, Group(i; k), and deduct the Seq(i).

Step 3.3 (Merging groups)

(3-10) foreach Group(i; j) in every groups constructed in (3-9).

(3-11) foreach Group(k; l) (i 6= k or j 6= l) in every groups constructed in (3-9).

(3-12) if Group(i; j) and Group(k; l) have the same members then remove Group(k; l).

Figure 3 schematically explains the detail of these steps for each component. First a component

Com(i; j) is selected and added to a list and then local alignment will be carried out between each
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( we consider com[i_j] in step 3.2)

Figure 3: Detecting group member for each component



member of the list and sequences. If one of these sequences indicates the similarity measured by the

ratio compared to the self-similarity score of the component, the new component is added to the list

and the present sequence is deducted from non-grouped list. The self-similarity score is also computed

for the new component. By this process, our algorithm allowing them to collect all possible sequences

to become in the same group only if those sequences satisfy the threshold cuto�s. Finally, if two or

more groups have the same members we regard them as one group in Step 3.3.

2.3 Improvement of the algorithm

Since our method utilizes local alignment based on the rigorous Smith-Waterman algorithm, we believe

that the sensitivity of our method is high enough to detect components from distantly-related protein

sequences. The local alignment method is, however, very time consuming process. Thus, it may take

very long time to detect components from a large number of protein sequences by our method.

To cope with this issue, we introduce the single-linkage clustering method [6] as a pre-process step

before analyzing components. By this step, given protein sequences are divided into a number of

groups such that each sequence in a group has similarity, which is at least a given threshold, directly

or transitively (via some sequence) to the other sequences in the same group (a transitive closure of

sequences with pairwise similarity � a given cuto�).

This step can be e�ciently carried out by using fast similarity search method (e.g., FASTA [7]).

Since the time complexity of our method is proportional to at least square of the number of sequences,

reduction of the number of sequences by the single-linkage clustering method is e�ective for decreasing

the computation time of our method.

3 Experiments and discussions

This application was tested on many amino acid sequences and applied to all of the ORFs deduced from

the complete sequence of E.coli chromosome compiled by ourselves using the chromosomal sequences

from the Japanese E.coli sequencing group [8, 9, 10, 11] and E.coli sequences in GenBank. We used

a total of 4562 ORFs in this analysis. We classi�ed all of them by the following method.

3.1 Pre-classi�cation by using single-linkage clustering method

As described in Section 2.3, we carried out single-linkage clustering among the 4562 ORFs before

analyzing components in the sequences. In this pre-classi�cation, we used the FASTA program [7] for

computing pairwise similarities and we set cuto� similarity score to be 120 in the FASTA opt score.

Table 1 shows the result of this pre-classi�cation.

3.2 Result of component-based grouping

For further classi�cation we used an improved algorithm described in Section 2.3 and classi�ed each

single-linkage clusters into several subgroups based on the distribution of components among the

sequences. In our component-based grouping we select the cuto� values described in Section 2.2 as

SegLen = 60, Sim = 100, ComLen = 10, LenDiff = 10 and SimDiff = 0:4. A computer program

LALIGN in the FASTA package [7] was used for assisting the local alignment analysis.

In our grouping process we used the same cuto� value for all single-linkage clusters. However

if we use the suitable cuto� value for every group, we may get better result than what we got at

present. Extracted view of an example of the single-linkage result in E.coli group is shown in Figure

4. From this �gure one can �nd out a number of protein sequences appeared in di�erent groups. This

is because each member has more than one component and members belong to each component are

di�erent from others.



Table 1: Result of single-linkage classi�cation with cuto� similarity score 120

No. of clusters No. of members

1 435

1 358

1 57

1 52

1 42

1 29

1 27

1 23

1 20

1 16

4 17

2 15

2 14

7 11

4 10

9 8

9 6

11 9

11 7

17 5

52 4

87 3

244 2

1910 1

Figure 5 shows the deduced major components of the DnaK homologues by our classi�cation. A

study based on the tertiary structure analysis of those proteins [14] reports that all the homologues

have �ve motifs named Phosphate 1, Connect 1, Phosphate 2, Adenosine and Connect 2.

However, previous computational methods for extracting components [3, 4] can detect only a part of

the motifs in DnaK, HscA and MreB, and none of them in FtsA.

As shown in Figure 5, the layout of DnaK components is very similar to that of HscA components

and both have the �ve motifs in their components. However, MreB has three motifs (Phosphate 1,

Connect 1 and Phosphate 2) and FtsA has only one motif (Connect 1) in their components. We

could not get the rest of the motifs for MreB and FtsA because the similarities among the regions

including these motifs are very weak compared to those among the other protein sequences. However

we succeeded in putting all the four homologues into the same group.

4 Conclusion

Several studies are reported for a systematic classi�cation of protein sequences. In one study [12, 13],

they reported signatures of protein sequences that are indeed highly informative. However because they

derive from non-gapped sequence alignment, these signatures may not correspond to entire component.

Another study [15] utilizes consensus matrix with gap to �nd out conserved regions among sequences.

However, the method is motivated for detecting regions conserved among as many sequences as possible

to carry out multiple alignment of those sequences. While our algorithm is designed for detecting as

many components as possible among two or more sequences.

In other studies [3, 4], they designed domain based clustering algorithms. However they did not

attempt to infer the gaps and the component size is �xed all the time. On the other hand, our
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Figure 4: Example of extracted components from a set of sequences classi�ed by the single-linkage

clustering method.
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Figure 5: DnaK homologues and their components.

algorithm includes such information and already operational in our laboratories for grouping and

functional analysis.

In the latter studies [3, 4], both of their methods classi�es the proteins DnaK, HscA, MreB and

FtsA that are reported to have the identical ATPase domain [14] into two separate groups (FtsA and

the others), whereas our method successfully classi�ed them into the same group through the local

alignment that allows gaps.

However the method to determine suitable threshold cuto� values for detecting components among

distantly related proteins remains as one of our future works. Also the number of component seems to

be too high. This is because we tried to �nd out all the possible conserved regions. More sophisticated

method may be required for only detecting components whose number is su�cient to do functional

assignment of uncharacterized protein sequences.
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