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Abstract

Our recently reported results [14, 29, 30] provide strong support for a hypothesis that some amino
acid sequences code for disordered regions rather than structured ones and that such disordered
regions are commonly involved in function. General and family-speci�c neural network predictors
developed in those previous studies suggest that di�erent classes of disordered regions exist. Here,
family-speci�c data preprocessing for disorder prediction in the calcineurin (CaN) family is explored.
The results show that prediction of order and disorder on CaN sequence data bene�ts signi�cantly
from the use of family-speci�c preprocessing, with feature extraction through principal components
analysis (PCA) outperforming feature selection techniques, although all methods do a good job of
discriminating CaN-speci�c disordered regions from CaN-speci�c ordered regions. On the other
hand, for the discrimination of CaN-speci�c disordered regions from general (unrelated to CaN)
ordered regions, feature selection approaches proved to be more appropriate than PCA. The results
further support a hypothesis that di�erent kinds of disordered regions exist, as all family-speci�c
disorder predictors developed in this study signi�cantly outperformed a previously reported general
multi-family disorder predictor.

1 Introduction

The standard view of protein structure and function is that the amino acid sequence determines the 3D

structure and the 3D structure is a prerequisite for function. However, there is a growing recognition

that not all proteins �t this standard view. Some proteins contain local regions that fail to fold into

particular 3D structures; other proteins are evidently entirely unfolded in their native states (Table 1).

Many of these \natively unfolded" proteins [34] or natively unfolded regions are, paradoxically,

involved in molecular recognition. For these proteins, molecular recognition depends on disorder-to-

order transitions as the natively unfolded proteins form complexes with their cognate partners [3,

6, 31, 32]. Increasing attention is being paid to a diverse collection of natively unfolded proteins or

natively unfolded regions that participate in cell signaling pathways [11, 16, 19, 20, 21, 26, 34]. The

prion protein, which was in the news recently due to the award of the Nobel Prize to S. Prusiner for

his infectious protein hypothesis, also has a very long disordered region under physiological conditions;

a part of this region apparently undergoes a disorder-to-order transition during the conversion of this

protein into its infectious state [27].

Although many examples of proteins with natively disordered regions have been reported [3, 6, 11,

16, 19, 20, 21, 26, 27, 31, 32, 34], it is di�cult to assess their commonness and overall importance.

For example, natively disordered proteins might be more di�cult to isolate and purify compared

to their well-structured cousins. This would introduce a bias right from the beginning, leading to

underestimation of the commonness and the importance of natively disordered protein.

Bioinformatics approaches provide a possible alternative means to carry out an assessment of the

importance of native disorder. The overall strategy would be to develop a method to estimate the



Term Description

natively a sequence that does not fold into a single unique 3D structure under physio-

unfolded logical conditions; might be like a random coil, or partially folded like a

sequence molten globule [13]; \natively disordered" is an alternative descriptor.

attribute a numerical value calculated over a speci�ed number of consecutive amino

acids [5] often called a window; examples include hydropathy [22], hydropho-

bic moment [15], 
exibility [33] and amino acid composition [30].

feature a product of preprocessing applied on a set of attributes; it can either be

one of or a combination of the original attributes.

pattern a tuple of attributes or features associated with a given sequence position,

augmented with the actual class of that position (in this case \ordered" or

\disordered").

out-of-sample testing using a data set that contains none of the examples from the training

set.

k-cross-
validation

dividing the data at random into k disjoint subsets and repeating k times

the process of training/verifying a neural network using data from k � 1 of

the subsets and using the remaining subset for out-of-sample testing; each

experiment is leaving out a di�erent subset for testing, and the test accuracy

is averaged over all k experiments.

Table 1: Jargon

likelihood that a given amino acid sequence is natively folded or natively unfolded and then apply this

method to databases of amino acid sequences. That is, since amino acid sequence determines protein

3D structure [4], we reasoned that it should also determine lack of structure as well. Our initial

explorations with neural network based disorder predictors indeed demonstrated strong relationships

between amino acid sequence attributes and lack of foldability [29, 30].

Following our initial studies on the relationship between sequence and foldability [29], we turned

our attention to a single natively disordered region identi�ed by alignment of a family of closely related

sequences [30]. Our initial family-speci�c predictor was developed using features (de�ned in Table 1)

chosen through a prior analysis of data from several di�erent individual proteins having disordered

regions [29]. The purpose of these prior studies was to ask whether a predictor trained on a set of

disordered sequences from one protein family, in this case the calcineurin (CaN) family, would work as

well as a predictor trained on several unrelated regions of disorder; for such a comparison, we needed

to use the same set of features.

Application of the family-speci�c predictor and the general predictor to sequences known to be

natively disordered often, but not always, yielded concordant predictions (manuscript in preparation).

Prediction disparities, when they occurred, suggested that distinguishable classes of disordered regions

probably exist. A reasonable extrapolation of this suggestion is that a collection of family-speci�c

predictors might give better estimates of disorder as compared to estimates based on a single predictor

formed from several classes of disordered regions. However, a family-speci�c predictor should be based

on family-speci�c features rather than features selected from the study of a collection of di�erent

proteins.

The �rst goal of the present study was to learn whether better family-speci�c long disorder predic-

tions can be achieved by identifying family-speci�c features. The second goal was to compare di�erent

data preprocessing methods for feature identi�cation in this domain.

In order to achieve the �rst of the two speci�ed goals, two di�erent CaN-speci�c predictors were to

be compared: one based on a set of features selected from di�erent individual proteins with disordered

regions [29, 30] and one based on CaN-speci�c feature selection. During the course of these studies,



we discovered that our original CaN-speci�c predictor's accuracy [30] could be improved. The new

version of this predictor was used here. In addition, the accuracy of the CaN-speci�c predictors would

be expected to be a�ected by the sequence homology in the ordered regions as well as by the feature

patterns in the disordered regions. For this reason, all the experiments were repeated for new data in

which the set of ordered regions of CaN was replaced by a \general" ordered data set developed from

the ordered regions randomly selected from the Nrl 3D database [25].

The results demonstrate the bene�ts of using family-speci�c features when discriminating between

ordered and disordered residues within the same family. In this case, the out-of-sample, cross-validated

prediction accuracy shows an increase from about 86 � 2% for the original but improved family-speci�c

predictor, up to 92 � 1% when using feature reduction methods for identi�cation of an appropriate

family-speci�c set of features. On the other hand, di�erentiating CaN-disorder from Nrl-order proved

to be more di�cult for some of the CaN-speci�c predictors employing family-speci�c-preprocessing

(i.e., the ones based on PCA) while BBS(10) preprocessing still worked well. In any case, all the

family-speci�c predictors studied here outperformed a multi-family predictor developed in [29], whose

average out-of-sample prediction accuracy was 73 � 2%. These results strongly support the idea

that di�erent kinds of disordered regions exist, and suggest that further exploration of family-based

predictors of protein disorder would be worthwhile.

Previous work relevant to this study is summarized in Section 2, the methodology is explained in

Section 3, the results are reported in Section 4, and a discussion is presented in Section 5.

2 Previous Work

Our research on disordered regions prediction in proteins was prompted by structural studies performed

on calcineurin (CaN) whose largest disordered region, containing 95 residues, plays an important part

in this protein's function [20]. In our initial work [29], disordered regions from CaN and 52 other

proteins from di�erent families were analyzed, resulting in separation into three disjoint subsets based

on their lengths:

� Short Disordered Regions (SDR) having 8-22 consecutive residues,

� Medium Disordered Regions (MDR) with 23-40 residues, and

� Long Disordered Regions (LDR) consisting of more than 40 residues.

A combination of sequence-based attribute comparisons on all subsets and a formal feature selection

process performed on the LDR subset resulted in the identi�cation of 10 relevant attributes out of

22 considered. A modi�ed sequential forward search technique with a minimum error probability

criterion was used for the feature selection algorithm, denoted as MSFS(10). The 10 features selected

by this technique were used to develop SDR, MDR and LDR neural network predictors.

In a further study [30] another LDR predictor was developed using sequence data from a group

of 13 homologous CaN molecules, as opposed to the seven previously used LDR proteins, which

belong to di�erent families. Although the 2D structure of the 12 homologous CaN molecules were

not known, the fact that highly similar proteins have similar 3D structures led to the assumption

that all the CaN molecules have the same disordered regions as the original CaN studied. To locate

the disordered regions on the new CaN sequences, a multiple sequence alignment was performed,

and all residues that aligned with disordered positions in the original CaN sequence were considered

disordered. This procedure generated enough data for the training of a neural network-based, CaN-

speci�c LDR predictor. The features used to train this neural network predictor were the same

10 features used in the original multi-family LDR predictor. Here, we are considering an improved

version of that CaN-based predictor, called MSFS-LDR(10), that is based on features selected using

MSFS on LDR data. Both this predictor and another one called PCA-LDR(10), based on features



obtained through principal components analysis (PCA) on LDR data, were used for comparison to the

predictors developed using CaN family-speci�c preprocessing. The idea was to perform a thorough

sequence data analysis on the 13 homologous CaN molecules to �nd out whether a more accurate

predictor for CaN-like LDRs can be developed by feeding a neural network with CaN-speci�c features

instead of those based on multi-family data, like the LDR database.

The present study involved two tasks. In the �rst one, a data set consisting of both CaN ordered

and CaN disordered data, called CaN-CaN, was used for data analysis and predictor development. In

task two, the possible e�ect of the CaN molecules' high homology was reduced by substituting ordered

data obtained from a random sample of Nrl 3D sequences for the original CaN ordered samples. In

fact, similarity analysis on the aligned CaN sequences [14] has determined that the disordered regions

of calcineurin show far less identity across homologues than the ordered ones. Thus, using non-

homologous ordered sequence data {abundantly available in Nrl 3D{ helps reduce any bias that high

homology may introduce in the predictions. Also, prediction results on these two data sets can hint

at the possible di�erences between family-speci�c and general ordered and disordered regions.

3 Methods

3.1 Data Generation

To predict order or disorder on a residue-by-residue basis, a number of sequence-dependent attributes

is calculated over a window of n residues surrounding each position in a protein sequence (see Table 1).

These attributes include amino acid compositions, average hydropathy and 
exibility, and hydrophobic

moments.

The window size n over which attributes are calculated is a compromise between the granularity of

the attribute values and the actual number of sequence positions that can be used for the predictions.

A larger n is desirable since a very small n limits the range of possible attribute values and causes the

composition of rare amino acids to be almost always evaluated as zero. However, a smaller n is also

desirable since the prediction range is limited to only m� 2bn=2c sequence positions, where m is the

total number of residues in a protein, because predictions can not be made for bn=2c residues at each
end of a sequence.

Once a window size n is decided upon, the values of all attributes are calculated for each position

within the prediction ranges of the selected protein sequences. The set of attribute values for each

sequence position is augmented with the class value for that position (ordered or disordered) to make

a pattern.

The number of attributes in a pattern can be large, producing a high-dimensional prediction

problem, and prompting the use of feature reduction preprocessing methods.

3.2 Feature Reduction

Pattern dimensionality reduction is carried out to: (a) cope with the \curse of dimensionality" that

requires an exponential number of patterns with respect to the number of features in order to design

a reliable predictor for a given non-linear phenomenon [8]; (b) to eliminate attributes that may have

little or no relation with the characteristic to be predicted; and (c) to eliminate redundancy produced

by highly correlated attributes.

Item (a) is of major concern as the number of available LDR patterns from the CaN sequences

is not very large. In fact, we were motivated to study the utility of sets of homologous proteins for

training neural network disordered regions predictors in the �rst place because this use of homologous

proteins, if successful, would enable the very rapid enlargement of our data sets of disorder. That is,

use of homologous sequences for training disordered regions predictors would potentially allow us to

take advantage of the rapidly expanding sequence data bases.



The feature selection and feature extraction methods for pattern dimensionality reduction consid-

ered in this study are summarized in this section.

3.2.1 Feature Selection

The feature selection approach to reducing the data dimensionality consists of eliminating a number

of attributes from the original set in such a way as to minimize the information loss. Feature selection

consists of: (1) a technique to search the space of all candidate feature subsets to �nd the optimal

one; and (2) a criterion to compare among di�erent subsets.

Due to combinatorial explosion, an exhaustive search of all possible feature subsets to �nd the

optimal choice is impractical for all but the smallest number of features. Fortunately, identifying the

optimal p features for our problem is possible by performing so called branch and bound search [28]

and employing a monotone selection criterion.

The branch and bound search process consists of exploring the candidate feature subsets in a tree-

like fashion, starting from the original feature set, including all attributes, and going down the tree by

removing one feature at a time. Thus, the �rst level of the tree consists of all feature subsets of size

d�1, where d is the number of features in the original set, the second level contains the subsets of size
d� 2 and so on. If a given subset has a criterion value that is smaller than that of a subset located

at a lower level in the tree, then all the nodes below it are eliminated because, by the monotonicity

property, their criterion values can not be larger.

The monotone selection criterion used in this study is the Mahalanobis distance, which is inversely

proportional to the minimum error probability and measures the overlapping of class distributions.

In a two-class order/disorder problem patterns can be grouped into two clusters, depending on their

class. The Mahalanobis distance � between the two data clusters with mean vectors �1 and �2 is

computed as

� =

q
(�2 � �1)TS�1(�2 � �1)

where

S =
(n1 � 1)�1 + (n2 � 1)�2

n1 + n2 � 2

and n1 and n2 are the number of patterns in each cluster, while �1 and �2 are the clusters' covariance
matrices.

In this paper, the branch and bound based selection of p out of d features employing the Maha-

lanobis distance criteria will be called the BBS(p) method.

3.2.2 Feature Extraction

In feature extraction methods, attributes in the d-dimensional patterns are combined to produce

smaller-dimensional patterns of p features. To achieve this reduction with a minimal information

loss our study employed a linear transformation technique called principal components analysis [8],

denoted here as PCA(p). This method relies only on the original attributes, without considering the

respective class information as in the BBS(p) method.

The PCA(p) algorithm maps d-dimensional patterns xj to p-dimensional vectors zj, where p < d.
Vectors xj can be represented as linear combinations of d orthonormal vectors ui as

xj =
dX
i=1

ziui



and can be approximated by

~xj =

pX
i=1

ziui +
dX

i=p+1

biui

where all bis are constants.
The minimum approximation error occurs when the basis vectors u satisfy

�u = �u

meaning that they are the eigenvectors of the data set covariance matrix �. The bis of this minimum
error approximation correspond to the eigenvalues, �i. So, the minimum error of a p-dimensional
approximation is achievable by discarding the d � p smallest eigenvalues and their corresponding

eigenvectors.

In practice, the data set is �rst normalized so that each feature has zero mean and unit variance, and

then the eigenvalues and eigenvectors of the covariance matrix are calculated. To generate a reduced

p-dimensional data set, the original patterns are projected onto the eigenvectors corresponding to the

p largest eigenvalues. This modi�ed data set is used to develop the neural network predictor.

3.3 Predictor Development

Predictors were developed following the same procedure for both the CaN-CaN and the CaN-Nrl 3D

data sets. For feature selection approaches, the available data is used to select a number of features,

which are then used to generate new patterns. Our preprocessed data were randomly partitioned into

�ve disjoint subsets each balanced as to have the same number of ordered and disordered patterns.

In the case of feature extraction, the data were partitioned before preprocessing. PCA was carried

out separately on each \raw" training set, and the resulting eigenvector matrix was used to extract

the desired number of features from the originating training set and the corresponding validation and

testing sets.

For a speci�c experiment, 4 of these data subsets were merged and this 80% of the total data were

then randomly partitioned in the following manner: 64% of the data points were used to train a feed

forward neural network with one hidden layer employing the backpropagation learning algorithm [35],

while an additional 16% were used to measure quality of the predictor during training in order to

decide when to stop the training process.

Generalization was estimated by testing the trained predictor's accuracy on the remaining 20% of

the data. This process was repeated three times starting from di�erent initializations of the neural

network parameters and the results were averaged. A total of �ve experiments were performed, each

leaving out a di�erent data subset for out-of-sample testing. The averaged testing result of these 15

neural networks was used to compare among the di�erent feature reduction techniques.

4 Results

4.1 Data Generation and Cleaning

Data used for the reported experiments were generated using information from a group of 13 ho-

mologous CaN proteins. Twelve of these proteins were found in SwissProt [7] (P2BA HUMAN,

P2B1 YEAST, P2B2 YEAST, P2B EMENI, P2B NEUCR, P2BC HUMAN, P2BC MOUSE, P2BA RAT,

P2BB RAT, P2BA BOVIN, P2BB MOUSE, and P2BB HUMAN) while the thirteenth was found in

PIR [17] (A36222). This group of proteins contains a total of 6,861 residues.
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Figure 1: BBS(p) results on three data sets for 2 � p � 17

For a given position within a CaN protein sequence, the following 24 attributes were calculated:

� the composition of each one of the 20 amino acids;

� the average hydropathy (using the Kite-Doolitle scale [22]);

� the average 
exibility [33]; and

� the � and � hydrophobic moments [15].

These attribute statistics were calculated over a window consisting of the studied sequence position

and bn=2c residues before and after it.

Due to the high similarity of the aligned sequences, some of the generated patterns were identical.

To avoid a possible prediction bias, any repeated patterns were eliminated. The resulting data set was

further reduced in order to have the same number of ordered and disordered patterns. When using

a window size of 21 amino acids, the total number of remaining patterns after all these reductions

was 1,720 (860 ordered and 860 disordered). This same number was maintained for the CaN-Nrl 3D

data set by substituting 860 unique ordered patterns generated from the Nrl 3D database for the CaN

ordered patterns. Several cleaned data sets computed using windows of various size (9 � n � 51) were

analyzed to determine an appropriate window and to reduce the number of attributes as explained in

the following sections.

4.2 BBS Preprocessing Experiments

To select an appropriate number of features from the original 24, a branch and bound optimal search

was carried out using the Mahalanobis probabilistic distance criterion as explained in Section 3.2.1.

Figure 1 shows the BBS(p) results on three data sets using attributes computed over windows of 9,

15 and 21 residues for p ranging from 2 to 17 features. As expected, the Mahalanobis distance grows

with the number of selected features, but its growth slows down at about p = 10, implying that there

is a smaller improvement in separability by adding more features beyond 10 to the selected subset.

Figure 1 also shows how the Mahalanobis distance grows with the size of a window over which

attribute statistics are computed. Additional experiments were carried out to determine how the
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Figure 2: BBS(10) results on data generated using window sizes ranging from 9 to 51 residues

selection criterion value scales with window size. After determining that 10 features were an appro-

priate subset size, the BBS(10) feature selection process was performed for data sets with attributes

computed over windows ranging from 9 to 51 residues. The Mahalanobis distance increased linearly

with the window size, as shown in Fig. 2. This means that, within the range of window sizes studied,

larger window size results in better class separation. Thus, an appropriate window size had to be

selected based on its e�ect on the prediction range. A window size of 21 residues, the same one used

in our previous work, was selected since it produces a region big enough to adequately capture the

presence of rare amino acids in the vicinity of the studied position without being so large as to limit

severely the prediction range on an average-sized protein sequence.

Table 2 contains the 10 selected features for each of the three window sizes shown in Figure 1, along

with the 10 features selected for the CaN-Nrl 3D data set using the chosen window size of 21, and

the 10 features selected for the multi-family data set studied previously [29] (as reviewed in Section

2) and used to develop the MSFS-LDR(10) predictors.

Notice that, even though certain attributes were consistently selected (most notably the compo-

sitions of tyrosine (Y), histidine (H) and serine (S)), there are certain di�erences among the various

groups of features, especially when they correspond to di�erent data sets.

Data set Window size Selected features

9 Y H S A F D C N P Flexibility

CaN-CaN 15 Y H S A F K T G R E

21 Y H S A D K T G P Flexibility

CaN-Nrl 3D 21 Y H S W F V C E R �-moment

LDR [29] various Y H S W D K C E Hydropathy Flexibility

Table 2: Selected features with letters representing composition of the corresponding amino acids
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Figure 3: Eigenvalues comparison for deciding on an appropriate number of principal components

4.3 PCA Preprocessing Experiments

Principal components analysis was carried out on the CaN-CaN data set, obtaining the eigenvalues

shown in Figure 3. The relative high value of the �rst �ve eigenvalues suggested that a reduction to a

5-dimensional space spanned by the corresponding eigenvectors could produce a reasonable predictor.

The available CaN data also allowed for a reduction to 10 dimensions as needed for fair comparison

to MSFS-LDR(10) and to BBS(10) feature selection considered in this study. These choices appear

reasonable since the �rst �ve and the �rst 10 principal components contribute 50% and 74% of the

variance of the entire data set, respectively.

Even though this analysis was performed on the whole data set, feature extraction was later carried

out independently on each of the �ve training subsets used for cross validation, as explained above

(Section 3.3). Also, PCA was applied to the original LDR data set from which the MSFS-LDR(10)

features were selected. The resulting eigenvector matrix was used to develop yet another predictor,

called PCA-LDR(10), which was applied to the CaN-CaN and CaN-Nrl 3D data sets.

4.4 Neural Network Prediction Experiments

Cross-validation out-of-sample prediction results for 75 neural network predictors (15 for each set of

features) trained on the CaN-CaN data set are summarized in Table 3. The corresponding experiments

for data set CaN-Nrl 3D are shown in Table 4. The prediction results shown for each data set represent

an average over three runs, each starting from a di�erent random initialization of neural network

parameters. The average and standard deviation values correspond to all 15 runs (�ve data sets and

three runs per data set). The �rst column corresponds to the CaN-speci�c neural network based

predictor developed using 10 features selected by the modi�ed sequential forward search over patterns

from seven di�erent protein families [30]. The neural network (NN) architectures were selected by a

trial and error process with u-v-w denoting a machine with u inputs, v units in a single hidden layer,

and w output units. After the trial and error process, all the chosen neural network architectures were

very similar, so the same number of hidden units (10) was used for all of them.

In the case of the CaN-CaN data set (Table 3), the PCA neural network predictors outperformed

the predictors developed through feature selection techniques (MSFS-LDR(10) and BBS(10)). In

general, family speci�c preprocessing produced predictors that were as good or better than their LDR-



Out-of-sample prediction accuracy

Multi-family Family-speci�c

CaN-CaN preprocessing preprocessing

Data subset MSFS-LDR(10) PCA-LDR(10) BBS(10) PCA(5) PCA(10)

a 86% 90% 79% 89% 94%

b 86% 89% 78% 85% 92%

c 82% 89% 91% 87% 91%

d 88% 87% 90% 87% 91%

e 86% 90% 84% 85% 93%

Average 86% 89% 85% 87% 92%

Standard deviation �2% �1% �5% �2% �1%

NN Architecture 10-10-1 10-10-1 10-10-1 5-10-1 10-10-1

Table 3: 5-cross validation, out-of-sample accuracy for predictors trained on the CaN-CaN data set

based counterparts. Notice how the PCA-LDR(10) predictor produces good results, although not as

good as the PCA(10) neural network, which also supports the notion that family-speci�c feature

reduction is signi�cantly better in this case. This further suggests that di�erent types of disorder

depend on di�erent relevant sequence attributes. The use of 10 principal components performed on

CaN-speci�c patterns proved to be the best preprocessing technique of those applied to CaN-CaN

data, producing a neural network that yielded an average out-of-sample prediction accuracy of about

92%.

On the other hand, the results shown in Table 4 for the CaN-Nrl 3D data set imply that features

selected for a speci�c family are not quite as good for discriminating between family-speci�c disordered

and general ordered residues. Indeed, the predictor developed using the MSFS-LDR(10) features had

the least drop in performance when trained on the CaN-Nrl 3D data. Also, notice that all the PCA

approaches, which gave the best results on the CaN-CaN data set, were the ones that su�ered the

greatest performance reduction when applied on the CaN-Nrl 3D set.

Even the lowest prediction accuracy reported in Tables 3 and 4 (e.g. 79 � 2%) is signi�cantly

better than accuracy observed previously (e.g. 73 � 2% [29]) when our predictors were applied to a

Out-of-sample prediction accuracy

Multi-family Family-speci�c

CaN-Nrl 3D preprocessing preprocessing

Data subset MSFS-LDR(10) PCA-LDR(10) BBS(10) PCA(5) PCA(10)

a 83% 79% 83% 75% 81%

b 85% 77% 77% 72% 80%

c 88% 80% 88% 72% 80%

d 86% 78% 85% 65% 81%

e 83% 79% 84% 69% 81%

Average 85% 79% 83% 71% 80%

Standard deviation �2% �2% �5% �2% �2%

NN Architecture 10-10-1 10-10-1 10-10-1 5-10-1 10-10-1

Table 4: 5-cross validation, out-of-sample accuracy for predictors trained on the CaN-Nrl 3D data set



collection of LDRs from a diverse set of proteins, and the best values in Tables 3 and 4 show very

substantial improvement. This observation suggests that family-speci�c predictors can have better

performance than general ones, probably because the feature sets of families of disordered regions are

less diverse compared to feature sets from unrelated regions of disorder. This in turn suggests that

the feature set of the LDR in CaN has remained relatively invariant over evolutionary time. The data

further show that feature selection performed on multi-family data result in predictors that are better

suited for discriminating between general order and family-speci�c disorder. Finally, the data show

that it was very easy to di�erentiate CaN-speci�c disorder from CaN-speci�c disorder, regardless of

the preprocessing method used.

5 Summary and Conclusions

5.1 Corroborating Studies

The concept that many amino acid sequences fail to fold completely on their own is supported not

only by a series of speci�c examples from natural proteins [3, 6, 11, 16, 19, 20, 21, 26, 27, 31, 32, 34],

but also by attempts to design rigidly folded proteins and by theoretical studies. With regard to

protein design experiments, it is relatively simple to construct amino acid sequences that fold into

ensembles of collapsed, but still 
exible structures [9], but rather more di�cult to design proteins

that fold into rigidly packed, unique 3D structures, even when diversity synthesis is used to explore

tens of thousands of sequences in locally promising regions of sequence space [12]. Thus, most if not

all currently designed protein sequences fail to fold into unique 3D structures with fully rigid side

chain packing. With regard to theoretical investigations, simple lattice models suggest that uniquely

folding sequences represent a vanishing small fraction of sequence space [1, 2, 18]. Overall, the speci�c

examples and the corroborating experimental and theoretical studies suggest that natively unfolded

sequences are apt to be common.

The speci�c examples of natively unfolded protein given above were chosen because they were

known to be involved in function. In each case, the disordered protein or the disordered region

acquired order upon binding with its partner. For these examples, the partners range from being small

molecules [3], to being other copies of the same protein [27], to being other proteins [6, 11, 20, 21, 34],

to being nucleic acids [16, 19, 31, 32]. These selected speci�c examples suggest that disorder-to-order

transitions upon complex formation, also called induced folding [32], encompass a broad range of

biological speci�cities.

Given the importance of being unfolded [26], as illustrated by the many speci�c examples and

various observations given above, studies to determine whether protein disorder can be predicted from

amino acid sequence seem warranted. We previously designed several neural network based predictors

trained using a collection of proteins whose disordered regions were identi�ed by missing electron

density in crystal structures [29]. One of these predictors, trained using long disordered regions

(LDRs), was then compared with a second predictor trained on a set of LDRs from homologous

proteins related to CaN rather than using di�erent disordered proteins [30]. Comparison of these

predictors, both trained using the same feature set, but from di�erent disordered sequences, indicated

similar overall 5-cross-validated, out-of-sample, residue-by-residue prediction accuracies and similar

false positive error rates [30].

5.2 Testing the Predictors

An ongoing e�ort has been to �nd reports describing additional examples of natively unfolded protein

and then to apply our predictors one-by-one to these out-of-sample test cases. In the course of such

studies we noticed that the CaN-based predictor often failed for unfolded proteins containing nucleic

acid binding regions whereas the LDR predictor gave better results and vice versa for some disordered



regions involved in protein binding (manuscript in preparation). Qualitatively such results seemed

reasonable because the multi-family LDR training set contained disordered regions that bind nucleic

acids, whereas the CaN unfolded regions are involved in protein binding.

The obvious extrapolation of these comparisons is that di�erent types of disordered regions (having

di�erent functions) could exhibit di�erent sets of underlying features determinant of the unfolding.

If so, carrying out predictions on a single type of disorder should lead to signi�cant improvements in

the predictions. To test this, we carried out studies on the predictions of a single family of protein

disorder, namely 95 amino acid LDR in CaN [20]).

To avoid a possible prediction bias when testing out-of-sample accuracy on homologous data, it

was necessary to eliminate all repeating patterns (data cleaning step discussed in Section 4.1). Further

homology reduction was accomplished by substituting ordered sequences from the Nrl 3D database for

the ordered regions of CaN. The fact that the ordered parts of the CaN sequences showed far greater

similarity than the disordered regions justi�ed this substitution as a means of reducing homology

e�ects. Still, the results of the current study imply that, although family-speci�c preprocessing is

the best approach for family-speci�c prediction, the performance of such a predictor is limited to this

type of disorder/order discrimination. To be able to predict a family-speci�c disordered region among

generic ordered residues, a more robust predictor is needed. This study suggests that performing

feature selection on multi-family sequence data and using general ordered patterns for training is

likely to be the best way to obtain such a predictor.

5.3 Implications for Protein Structure and Function

Ordered regions are classi�ed into structural subtypes: helix, sheet, loops, reverse turns, etc., based

on visually obvious structural criteria. The results of the present paper suggest that disordered

regions may likewise have subtypes, but it is unclear at this time how best to classify such disordered

sequences. The feature selection and feature reduction results presented herein suggest that studies

aimed to reveal the most appropriate mappings from feature space into structure space should be

tried. Such an approach might be useful not only for disordered sequences, but perhaps also as a

means to improve the classi�cation of the ordered sequences as well.

Disordered regions can underlie numerous di�erent protein functions [14, 29, 30]. For example,

disorder facilitates protease digestion, which is often required for enzyme activation and which could

also be used to regulate protein turn-over. Also, disorder evidently improves the ability of one protein

to bind to many di�erent targets, as suggested both for p21Waf1=Cip1=Sdi1 [21] and earlier for calmod-

ulin [10, 23, 24, 36]. In addition, as emphasized here, disorder can also play a role in speci�c binding.

In this case, the key event is a disorder-to-order transitions upon complex formation.

It might seem to be a small matter whether a protein folds �rst and then forms a complex (e.g.

prior folding) or whether folding and complex formation occur concomitantly (e.g. coupled folding).

However, this apparently small distinction has enormous consequences. Coupled folding enables the

biologically useful combination of high speci�city and low a�nity [3, 14, 31] or low speci�city and

high a�nity [14], whereas, to the �rst order of approximation, prior folding does not allow such a

separability of a�nity and speci�city [14]. That is, for prior folding, a�nity and speci�city are linked;

both are high or both are low. On the other hand, for coupled folding, a�nity and speci�city are

readily separable through evolution and natural selection [14]. Thus, the apparently small di�erence of

prior folding versus coupled folding has a radical a�ect on the biological potential of a given complex

formation event.

If a region of sequence undergoes a disorder-to-order transition upon complex formation, why

should such a sequence be predictable as a region of disorder? Indeed, it seems to be a conundrum

that we are evidently able to predict disorder for sequences that become ordered upon binding with

partners.

The solution to this false conundrum is simple. Obviously, our predictors can only de�ne likelihoods



or tendencies. In such a circumstance, the local tendency for a region of sequence to be disordered

can be overcome when that local region interacts with something else. That something else could

be another region in the same protein, in which case the prediction of disorder would lead to a false

positive. Alternatively, that something else could be another protein or an entirely di�erent class of

molecules such as DNA or RNA, in which case a correct prediction would result.

Interactions between a given region of sequence and other regions that are well separated along

the sequence are frequently called nonlocal interactions. Nonlocal interactions are believed to lower

the predictability of secondary structure [5]. In the same way, such nonlocal interactions could lower

the accuracies of the prediction of disorder. However, if a region of disorder were very long or if

a region of disorder were to have the function of binding to nonprotein such as nucleic acid, then

nonlocal interactions with other parts of the same protein might be less likely to induce order. In

these circumstances, predictions of disorder are likely to be more accurate.

Our predictions of disorder may have practical uses as well. For example, the prediction that a

protein is very likely to be entirely disordered would indicate that NMR would probably be a better

approach than x-ray crystallography for determining its 3D structure. The prediction of substantial

regions of disorder and other regions of order would indicate that protease digestion experiments would

be informative. Researchers involved in studies on proteins that may contain regions of disorder are

encouraged to contact us to arrange for the application of our predictors to their sequences. This

may yield immediate practical bene�t and may also, over time, provide information for improving our

predictors.
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