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Abstract

Knowledge discovery in large databases (KDD) is being performed in several application do-

mains, for example, the analysis of sales data, and is expected to be applied to other domains.

We propose a KDD approach to multipoint linkage analysis, which is a way of ordering loci on a

chromosome. Strict multipoint linkage analysis based on maximum likelihood estimation is a com-

putationally tough problem. So far various kinds of approximate methods have been implemented.

Our method based on the discovery of association between genetic recombinations is so di�erent

from others that it is useful to recheck the result of them. In this paper, we describe how to apply

the framework of association rule discovery to linkage analysis, and also discuss that �ltering input

data and interpretation of discovered rules after data mining are practically important as well as

data mining process itself.

1 Introduction

To detect a disease gene locus on a chromosome, genetic linkage analysis technologies have been

developed. They consist of two phases: (1) making a genetic map, that is, determining the distance

and order among genetic marker loci, and (2) locating a disease locus in a genetic map by discovering

associations between the marker loci and the phenotypic traits of a disease. In this paper, we will

address the �rst phase using an association rule discovery algorithm.

How is the distance between marker loci calculated? Maximum likelihood estimation has been

widely used, which is a statistical method of estimating the values of parameters by maximizing the

occurrence probability of samples. Genetic linkage analysis is formalized in terms of maximum likeli-

hood estimation as follows. Sample data are genotypes of genetic markers per individual. Parameters

to be estimated are recombination fractions between two loci, each of which is approximately equiv-

alent to the genetic distance between loci. By maximizing the likelihood of samples, recombination

fractions between two loci are calculated.

To determine the order of loci, we have to consider more than three loci. Certainly, we can

determine the order by pairwise comparisons of recombination fractions between all available loci.

However, the accuracy of linkage analysis depends upon how much information we can exploit from

sample data. In the case of ordering loci, considering many loci simultaneously makes it possible to

obtain much more information than considering only two loci [8]. If we could not, we would have to

collect much more genotypes. A way of linkage analysis like this is called multipoint analysis, while

two-point analysis is such that only two loci are considered simultaneously.

Strict multipoint analysis involves the calculation of the likelihood of possible orders and the choice

of the best order among them. However, it is obvious that the calculation of the likelihood of possible
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orders is practically intractable for more than ten marker loci. For n loci, there are n!
2
possible orders.

Finding an order with the highest likelihood requires n!
2
calculations of the likelihood. Multipoint

linkage analysis is computationally hard.

From a viewpoint of e�ciency, establishing an approximation method is crucial in multipoint

linkage. For example, order command of MAPMAKER/EXP [6, 7] �nds the best order as follows.

First, the order of a subset chosen at random is determined by exhaustive n!
2

calculations of the

likelihood. This initial order must be much more likely than the second best one. Next, the rest of

loci are inserted into an appropriate interval of the initial order one by one.

No one can say that the order of loci obtained by these ordering methods is true on a actual

chromosome, unless physical mapping is performed. Therefore, in order to con�rm the accuracy of the

result, various kinds of ordering criteria are required. Certainly, criterion mentioned above intuitively

seems to be correct, however, they are the aggregation over intervals. So one can not logically argue

whether such a criterion is always valid or sometimes concludes a wrong answer. On the other hand,

our method, by which overlapping intervals are found from an association of genetic recombinations,

is not only di�erent in principle, but also it is understandable why it concludes a right answer.

Another reason why we focus on an association rule is that the simplicity of the framework makes

it possible to handle di�erent kinds of data uniformly. In [11], the authors discovered association rules

between three kinds of heterogeneous data, amino acid sequences, protein structures and functions.

In trait analysis, the second phase of linkage analysis mentioned in the beginning of this section, we

have to handle heterogeneous data, genotypes and phenotypes [5].

KDD process roughly consists of three components: data mining, preprocessing input data and

rule interpretation. The main component is data mining. In section 2, we explain how to �nd an

association rule. Preprocessing requires a deep understanding of an application domain, that is, to

understand a mating system and the characteristics of genotypic data. We touch on it in section 3.

How to order three loci and more than three by the interpretation of discovered rules is described in

section 4 and 5. In section 4, we discuss how to order three loci, so-called three-point analysis, and

how to order more than three loci using the result of three loci in section 5. In section 6, we discuss

the problem caused by a double recombinant and the solution to it. Every component is important

to obtain desired knowledge. We are repeating the inspection of the �nal result and the improvement

of each process.

2 Association Rule

Finding associations from a large amount of data e�ciently is required in many application domains.

A framework of an association rule and an e�cient algorithm for �nding such rules were presented by

Agrawal et al. [1, 2]. They also applied association rules to the analysis of sales data. In this paper,

we only apply their algorithm to an ordering problem. We won't change their framework at all.

We describe an overview of association rule discovery using an example of sales data. Input data

are provided in the form of a table, that is, a set of tuples. For example, the �rst tuple of table 1

means that an eraser and a notebook are bought together in transaction 1. After mining, we obtain

a set of association rules in the form of X ) Y , where X and Y are items. Intuitive meaning of

an association rule X ) Y is that when X holds, Y also holds. For example, an association rule

pencil = 1) eraser = 1 means that customers who buy a pencil also buy an eraser.

Association rules generated by a mining algorithm must be interesting to us. Agrawal used two

measures to evaluate the interestingness of rules. Support of items X and Y (sup(X ^ Y )) or a rule

X ) Y (sup(X ) Y )) is de�ned as the rate of tuples including both items. Con�dence of a rule

X ) Y (conf(X ) Y )) is de�ned as the ratio of sup(X^Y ) to sup(X). Association rules with higher

support and con�dence than minimum support and minimum con�dence given by user are considered

signi�cant. Assuming that minimum support and minimum con�dence are 50 % and 75%, only one

association rule pencil = 1) notebook = 1 is discovered from the sales data in table 1.



trans id pencil eraser notebook

1 0 1 1

2 1 0 1

3 0 0 1

4 1 0 1

Table 1: Example of sales data

In our case, we can represent input data as table 2. The number of the rows and columns corre-

sponds to that of individuals, from which genotypic data are collected, and that of loci to be ordered,

respectively. A cell Gi�j of the table shows the genotype of locus j of individual i. How about the

values of the genotype is described in the next section.

individual id GL1 GL2 GL3

1 G1�L1 G1�L2 G1�L3

2 G2�L1 G2�L2 G2�L3

3 G3�L1 G3�L2 G3�L3

Table 2: Table of input data

3 Preprocessing Input Data

The key to estimate the distance between marker loci is to know how often recombinations occurred

between them. Given the genotypes of individuals as input data, how can we know about a recombi-

nation event? We have to explain a mating system, F2 backcross [10], from which genotypic data are

collected.

F2 backcross is a kind of mating systems as illustrated in Figure 1. In F1 generation, a doubly

heterozygous individual(AB/ab) is married to a doubly homozygous one (ab/ab) who has the same

genotype as one of the grandparents. As a result, there are two kinds of genotypes of F2 individuals,

heterozygote for grandpaternal and grandmaternal alleles (h) and homozygote for grandmaternal

alleles (H). Genotypic data of F2 individuals are used in linkage analysis.

The most important property of F2 backcross is phase-known. One can uniquely �nd out whether

a genetic recombination occurred or not. Figure 1 shows that nonrecombination on a paternal chromo-

some occurred in individuals 1 (AB/ab) and 2 (ab/ab) whose genotypes of loci 1 and 2 are identical. On

the other hand, one recombination occurred in individuals 3 (Ab/ab) and 4 (aB/ab) whose genotypes

are di�erent.

Strictly, the fact that the genotypes of two loci are di�erent means an odd number of recombina-

tions. However, as far as concerning a chromosomal region less than about 100 cM, we don't have

to take care. The assumption that a genetic recombination occurs on a chromosome under study at

most once is called complete interference.

Considering the properties of F2 backcross, we can transform the original tuple (GLi
represen-

tation) into an explicit representation of a genetic recombination between two marker loci (RLi;Lj

representation) as follows:

original tuple (GLi
representation) (GL1; GL2; GL3; � � � ; GLn�1; GLn) = (H;h;H; � � � ;H; h)

+
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Figure 1: F2 backcross pedigree. 'X' between loci 1 and 2 shows one genetic recombination between

them. In this paper, genotype 'h' denotes heterozygote for grandpaternal and grandmaternal alleles,

while genotype 'H' homozygote for grandmaternal alleles.

original tuples

individual id GL1 GL2 GL3

1 H h H

2 h h H

3 H H H

+ data transformation of F2 backcross data

transformed tuples

individual id RL1L2 RL1L2 RL1L3

1 1 1 0

2 0 1 1

3 0 0 0

Figure 2: Data transformation



transformed tuple (RLi;Lj
representation) (RL1L2; RL1L3; � � � ; RLn�1Ln)

| {z }

1

2
n(n� 1) elements

= (1; 0; � � � ; 1)

where GLi
= H and GLi

= h means that the genotype of locus i is heterozygous and homozygous,

respectively, and RLiLj
= 1 indicates that a genetic recombination between loci i and j occurred, while

RLiLj
= 0 corresponds to nonrecombination. For example, GL1 = H and GL2 = h implies RL1L2 = 1.

Figure 2 illustrates the data transformation from the original tuples of F2 backcross data.

Association rules constituted by RLiLj
items are easy to understand, when we interpret the rules.

In the next section, we use association rules made from RLiLj
items. However, original tuples that GLi

items constitute are used as inputs of an association rule discovery program, due to time complexity.

Details are explained in the following section.

4 Rule Interpretation for Three-Point Analysis

After data mining, we determine a locus order by giving relevant interpretation to discovered rules.

In the beginning, we try to order three loci as the �rst step to ordering more than three. For three

loci L1, L2, and L3, there are three intervals L1L2, L2L3, and L1L3. We focus on an association

rule in the form of RL1L2 = 1) RL1L3 = 0 under the assumption of complete interference. Intuitive

meaning of the rule is that when a recombination for L1L2 occurred, that for L2L3 never occurred.

This means that the locus order is L1-L2-L3. We will explain these things in terms of con�dence

rather than support.

More precise interpretation is given by �nding a mapping from conf(RL1L2 = 1 ) RL1L3 = 0)

to the order of three loci. The relationships between the order of three loci and the con�dence is

illustrated in Figure 3. The con�dence ranges from 0 to 1, according to three patterns of the locus

orders. We try to �nd a mapping from the con�dence to the corresponding locus order as the inverse

mapping or contraposition, after �nding a mapping from each locus order to its con�dence.

In case 1, that is, locus order L1-L2-L3, the above association rule intuitively means that whenever

a recombination for L1L2 occurred, that for L2L3 never occurred. Interval L1L2 does not include

interval L2L3. The con�dence equals 1. In case 2, L1-L3-L2, RL2L3 = 0 does not always hold, when

RL1L2 = 1 holds. The con�dence ranges from 0 to 1. In case 3, L3-L1-L2, interval L1L2 overlaps

with interval L2L3. The con�dence of the rule is always 0, because a recombination for L1L2 always

indicates that for L2L3.

Without unknown genotypes, solid arrows contain all mappings. Suppose that unknown genotypes

may be included, however, another mappings shown by broken arrows have to be considered. For

example, suppose that there are some tuples including RL1L2 = 1 and RL2L3 = unknown. The

con�dence may be less than 1, even if the order is L1-L2-L3. RL2L3 = unknown reduces sup(RL1L2 =

1 ^ RL2L3 = 0) only, but it does not sup(RL1L2 = 1). By the way, in the case of multipoint linkage

analysis based on maximum likelihood, a numerical algorithm, EM algorithm [3], is frequently adopted

to deal with missing data. Ours is a logically correct way to deal with missing data.

From �gure 3, the contraposition that holds despite including unknown genotypic data is that

conf(RL1L2 = 1 ) RL2L3 = 0) 6= 0 implies that the order of three marker loci is either L1-L2-L3

or L1-L3-L2, not L2-L1-L3. In other words, locus L1 is not in the middle of three loci. To prove

L1-L2-L3, the followings have to be satis�ed:

conf(RL1L2 = 1) RL2L3 = 0) 6= 0 ) Locus L1 is not in the middle of three loci. (1)

conf(RL2L3 = 1) RL1L2 = 0) 6= 0 ) Locus L3 is not in the middle of three loci. (2)

At the same time, conf(RL2L3 = 1 ) RL1L3 = 0) = 0 holds. However, this is not always true under

no assumption of complete interference. As mentioned above, GLi
representation is superior to RLiLj

one with respect to time complexity. Time complexity is O(n3) in the case of GLi
, while O(n4) in the



case of RLiLj
. Assume that n is the number of loci. In the case of RLiLj

representation, 1

2
n(n � 1)

items are required for n loci. Two itemsets are calculated to make association rules like (1) and (2),

so the number of association rules is f1

2
n(n� 1)g2, that is, O(n4). In the case of GLi

representation,

only 2n items are required for n loci, because GLi
= H and GLi

= h for one loci. Three itemsets are

combined to make association rules like (3) and (4), so the number of generated rules is (2n)3, that

is, O(n3). Time complexity of three-point analysis is O(n3).

Formulas (1) and (2) are translated into (3) and (4), respectively. three-point analysis is performed

by using these formulas instead of (1) and (2).

sup(GL1 = H ^GL2 = h) GL3 = h) + sup(GL1 = h ^GL2 = H ) GL3 = H) 6= 0 (3)

sup(RL2 = H ^ RL3 = h) GL1 = h) + sup(RL2 = H ^GL3 = h) GL1 = h) 6= 0 (4)

RL1L3

RL1L2

locus L1 locus L2 locus L3

RL1L3

RL1L2

locus L1 locus L3 locus L2

RL1L3

RL1L2

locus L3 locus L1 locus L2

R = 1 R = 1conf( ) = 1L1L3L1L2

R = 1 R = 10 < conf ( ) < 1L1L3L1L2

R = 1 R = 1conf( ) = 0L1L3L1L2

case 1

case 3

case 2

Figure 3: Relationships between the order of three loci, L1, L2 and L3, and the con�dence of an

association rule RL1L2 = 1 ) RL1L3 = 1. A solid arrow shows a mapping from a particular order

of three marker loci to the con�dence of the rule without unknown genotypic data. Both solid and

broken arrow show mappings, when unknown genotypic data are also included.

5 Ordering More Than Three Marker Loci

Three-point results, that is, the orders of all triplet marker loci, are used to order more than three.

More than three loci are ordered using a divide-and-conquer technique. First, a pivot locus is chosen

from a set of loci. A set of loci is divided into two subgroups separated by the pivot, according to

three-point results including the pivot.

In �gure 4, locus L3 is chosen as the �rst pivot. From two three-point results, L1-L3-L4 and

L2-L3-L4, all loci are divided into two subgroups, group 1 and 2. Group 1 consists of loci L1 and L2,



while group 2 locus L4. The pivot L3 is added to both subgroups. In stead of a three-point result

L2-L3-L4, L3-L1-L2 or L3-L2-L1 also supports that loci L1 and L2 belong to the same subgroup.

Group 1 should be further divided into two subgroups. Locus L2 is chosen as a pivot. According to

a three-point result L1-L2-L3, group 1 is divided into group 1-1 and group 1-2, the member of which

is locus L1 and L3, respectively. None of the groups are not divided, because all groups contain only

two marker loci including a pivot. In a conquer stage, the order of the subgroups are determined by

the previous pivot. We can �nd that group 1-2 is adjacent to group 2, because group 1-2 contains a

pivot locus L3. The order of the subgroups is group 1-1 - group 1-2 - group 3. Finally, the order of

four loci turns out to be L1-L2-L3-L4. The average number of the division is O(log n), where n is the

number of loci.

locus L2

pivot = locus L3

L1 - L3 - L4

L2 - L3 - L4

order

order

locus L3
locus L2

locus L1

locus L4

locus L1
locus L3 locus L4

locus L1 locus L2 locus L3 locus L4

pivot = locus L2

L1 - L2 - L3
order

group 1 group 2

group 1-2group 1-1

conf(RL1L3=1  RL1L4=1) > 0

conf(RL2L3=1  RL2L4=1) > 0

conf(RL3L4=1  RL2L4=1) > 0

conf(RL3L4=1  RL1L4=1) > 0

conf(RL1L2=1  

conf(RL2L3=1  

Figure 4: Ordering more than three loci using a divide-and-conquer technique.



6 Problem of a Double Recombinant

In the previous section, we gave the interpretation of the discovered rules under complete interference.

Our argument is not valid, however, if we choose triplet loci including a double recombinant illustrated

in �gure 5. We have not yet established a way to directly determine the order from such data. If we

can exclude such a triplet including a double recombinant, we can determine the order under complete

interference. In this section, we describe how to exclude such triplets. Concerning three loci, we show

the possible patterns of recombinants in table 3. In the following paragraphs, we assume that a true

order is L1-L2-L3.

locus L1 locus L2 locus L3

genotype
H h H

R = 1L1L2

R = 0L1L3

R = 1L2L3

h H h

Figure 5: Double recombinant between three loci

pattern RL1L2 RL2L3 RL1L3 L1-L2-L3 L1-L3-L2 L2-L1-L3

P1 0 0 0 0 0 0

P2 1 0 1 1 1 2

P3 0 1 1 1 2 1

P4 1 1 0 2 1 1

Table 3: Possible recombination patterns of individuals. The columns from the second to the fourth

show the recombination patterns of individuals. The rightmost three columns show the number of

recombinations under the possible orders of three loci. In the case of P2, a recombination occurs

in interval L1-L2 and L1-L3. Assuming that the order is L1-L2-L3, only one recombination occurs

between L1 and L2. Two recombinations occur simultaneously in the case of L2-L1-L3.

When all four kinds of individuals, P1, P2, P3 and P4, are found in genotypic data, two necessary

conditions (1) and (2) for proving that one of three loci is not in the middle of three hold for all three

loci. In this case, there is no evidence to con�rm which order is true among possible three. Such a

triplet does not contribute to ordering, but does not lead to a wrong answer, because we can easily

distinguish this pattern. This kind of triplets are ignored.

A worse case is that a double recombinant P4 is included, but both a single recombinant P2

and P3 are not included. For example, we observed only three patterns, P1, P3 and P4. Under

complete interference, it is concluded that L2-L1-L3 is a true order. Such a case must be excluded

from consideration, but it is not easily to distinguish them.

In what situation such a case is observed? It is a case that the length of interval L1-L2 is much

shorter than that of interval L2-L3. In this case, the number of P2 sometimes may fall into zero,

while that of P4 is not zero. A recombination of interval L1-L2 hardly occurs, compared with that



of L2-L3. Therefore, whenever a recombination of interval L1-L2 occurs, that of interval L2-L3 also

occurs. In terms of support, sup(RL1L2 = 1) is much smaller than sup(RL2L3 = 1). The probability

that at least one P2 is observed among L1-L2 recombinants is P (P2jRL1L2 = 1) = 1� (sup(RL2L3 =

1))N , where N is the number of L1-L2 recombinants, that is, sup(RL1L2 = 1)� (total number of

individuals). In the worst case, when sup(RL1L2 = 1) and N are close to 1

2
and 1, respectively, the

probability P (P2jRL1L2 = 1) could be down to 1

2
. We have to check whether P (P2jRL1L2 = 1) and

P (P3jRL2L3 = 1) are great enough to con�rm the result of three-point analysis, L1-L2-L3. This is

done by postprocessing.

7 Experimental Results

We applied our method to F2 backcross data of chromosome 1 of BSB mouse, which is available from

The Jackson Laboratory1. Genetic maps per chromosome are also available as well as genotypic data.

Chromosome 1 of BSB mouse contains genotypes of 33 genetic markers of 94 F2 individuals. The

genetic distance of chromosome 1 is approximately 120 cM. The genetic map shows that two recom-

binations occurred between distant loci in some individuals. We used an association rule discovery

algorithm, apriori [2], implemented in C. Both preprocessing and postprocessing are performed with

several perl scripts.

All results of triplets not including double recombinants are consistent with the results of compare

command of MAPMAKER/EXP, which executes n!
2
calculations of the likelihood. The data from

The Jackson Laboratory also include a double recombinant as mentioned in the previous section. For

example, sup(RD1MitA1 D1Mit112 = 1) = 52

94
, is thirteen times greater than sup(RD1Mit112 D1Mit150 =

1) = 4

94
. A wrong order D1MitA1 - D1Mit150 - D1Mit112 is derived without postprocessing, whereas

a correct order is D1MitA1 - D1Mit112 - D1Mit150. However, the postprocessing excludes such a

triplet.

8 Related Works

There are other approximate criteria based on two-point analysis. SAL(the sum of adjacent log-

likelihoods) says that the best order is the order with the maximum sum of adjacent log-likelihoods.

SAR (the sum of adjacent recombination fractions), SARF [12] and MDMAP [4] say that the best

order is that with the smallest sum of adjacent recombination fraction. These criteria are used to

make a preliminary map, because the accuracy is not guaranteed.

CPROP [9] is also a rule-based approach for constructing genetic maps as well as ours. The input

data are a set of partial orders of loci, not genotypes. It is not a multipoint analysis program, but

can deal with several kinds of partial orders and constraints that may be inconsistent with each other.

Therefore, the calculation is so complicated that the time complexity is O(n5), where n is the number

of loci.

9 Conclusions

In this paper, we proposed a novel and intuitively understandable approach to multipoint linkage

analysis using an association rule discovery algorithm. An idea of �nding association between genetic

recombinations is completely di�erent from maximum likelihood estimation that most multipoint

linkage analysis programs adopt. We also presented some heuristics in order to deal with genotypic

data, a part of which are missed or include double recombinants.

1http://lena.jax.org/resources/documents/cmdata
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