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Abstract

We describe a model for characterizing site mutations in evolving proteins. By representing the

�tness of each of the amino acids as a function of the physical-chemical properties of that amino

acid, and constructing mutation matrices based on Boltzmann statistics and Metropolis kinetics,

we are able to greatly reduce the number of adjustable parameters. This allows us to include site

heterogeneity in the model, as well as to optimize the model for speci�c protein types. We demon-

strate the applicability of the model by investigating the phylogenetic relationship between various

subtypes of HIV-1.

1 Introduction

A large number of methods have been developed for modeling the evolution of biological sequences.

Phylogenetic reconstructions have usually been based on analyzing sequences at the DNA level for a

number of important reasons. The small size of the alphabet of base-pairs resulting in only twelve

possible transitions means that the statistics of base changes can be described with only a few pa-

rameters. Focusing on non-coding regions eliminates the need to complicate the model to account for

selective pressure. Coding regions can be analyzed by gathering statistics about the substitution rate

as a function of codon position, or of synonymous vs. non-synonymous substitutions. Simplicity also

suggests that the models may be more universal, in that it is likely that the rate of di�erent base

changes will not be highly species-dependent.

In contrast, modeling evolution at the amino acid level contains numerous di�culties. There are a

total of 380 possible transitions between amino acids, not counting insertions and deletions. Generally

these are modeled with a mutation matrix, a 20 � 20 array that represents the probability of any

amino acid mutating to any other in a given length of evolutionary time, with values �xed through

an analysis of sets of homologous proteins. Most approaches for deriving mutation matrices rely on

the approach originally derived by Dayho� and Eck, based on the relative number of di�erent amino

acids aligned to each other in pairs of closely-related homologous proteins [2]. Others have used

variations of the original Dayho� approach, including the use of blocks of aligned sequences or the

alignment of three-dimensional structures [1, 10, 12, 18, 19, 23, 25] In a contrasting approach, based

on the fact that site-mutations tend to conserve important properties, a number of investigators have

developed substitution matrices based on the physical-chemical di�erences between the amino acids

[5, 6, 8, 21, 22, 24]. Such matrices have been useful at generating insight, but have not proven their

use for quantitative applications [11].

As mentioned above, analysis of non-coding regions of DNA remove most of the need to consider

selective pressure. In contrast, the situation for proteins is more complicated. The selective pressure



at each location in the protein depends heavily on the characteristics of that location - whether

that part of the amino acid chain is exposed to solvent or buried, is in one secondary-structure or

another, is involved in important tertiary contacts, or has some functional signi�cance such as being

in a binding, dimerization, or catalytic site. The relative rates of amino acid substitutions will also

depend on the nature of the protein, whether it is a membrane, globular, extra-cellular, intra-cellular,

regulatory, or structural protein. These distinctions are generally ignored in the construction of amino

acid substitution matrices. The probability of any amino acid mutating to any other is considered

to be independent of the nature of the protein or the organism or the role of that particular amino

acid. There has been some work developing speci�c mutation matrices as a function of local structure

[14, 27, 28]. While these approaches address some issues of site heterogeneity, they still su�er from

a number of inherent limitations. These approaches cannot deal with proteins of unknown structure,

since the categorization of the sequences into di�erent types of locations is based on prior knowledge.

In addition, the division of the protein into di�erent types of locations is based on criteria that

may not be the most important, ignoring, for instance, functional constraints. Dividing the data

base into di�erent categories and �nding appropriate mutation matrices for each category requires

more data, exacerbating the limitations caused by considering only proteins of known structure. And

the resulting model still assumes that all amino acids in a given stuctural type are under similar

evolutionary pressures and will have similar rates of mutations.

One conceivable approach towards this situation is to imagine that there are a variety of site

classes, depending upon unspeci�ed and possibly currently unknowable considerations, each with a

particular set of mutation rates de�ning a separate mutation matrix. The evolutionary patterns could

then be modeled by the set of mutation matrices and the probabilities that any location in the protein

would belong to one or the other of the site classes. When pairs of proteins were considered, the result

would be identical to that of a single mutation matrix equal to a weighted sum of the various site-

class speci�c mutation matrices. If, however, there were sets of homologous proteins, the correlations

in the mutations between di�erent pairs of the set could be used to both adjust the parameters in

the model as well as to provide information about which locations belonged to which site class with

what probability. There are, of course, practical problems involved with this approach. There would

be an explosion in the number of adjustable parameters, presenting a di�cult optimization problem

and necessitating a large and extensive protein data base. It would certainly be di�cult to imagine

optimizing a model like this for speci�c types of proteins.

If, however, it were possible to greatly reduce the number of adjustable parameters, then an

approach such as the one described above might be tractable. If the number of parameters could

be su�ciently reduced, it might be possible to develop models for speci�c protein types, increasing

our ability to recognize homologs and to perform phylogenetic analyses. There would be a sizable

advantage to using protein rather than DNA sequences { as much as the evolution of DNA base-pairs

is easy to understand because the selective pressure is weak, the same lack of selective pressure also

results in a rapid saturation of the mutations, preventing the analysis of more distant evolutionary

relationships. The enhanced selective pressure acting on proteins could conversely serve to make

delineating these distant homologies possible.

How can we reduce the number of adjustable parameters to a reasonable level? To do this, we take

advantage of two insights. The �rst is that the closer the functional form mirrors the nature of the

data, the fewer adjustable parameters are necessary to achieve a required accuracy. The second insight

goes back to the original construction of mutation matrices based on di�erences in physical-chemical

properties. More recently, we investigated how these properties change during site-mutations [15, 16].

The properties of the amino acids are �xed and universal. If a mutation matrix could be constructed

that is a function of these properties rather than of the amino acids themselves, then the large alphabet

of amino acid types would not increase the number of adjustable parameters. The main challenge is

to create such a matrix using insights from physical chemistry and evolutionary biology.

The second challenge is to create a way of optimizing the adjustable parameters for sets of homol-



ogous proteins. As mentioned earlier, in order to untangle the various di�ering site classes, we need to

consider sets containing three or more homologous proteins, so that the presence of correlations in the

mutations at each position can inform the optimization procedure. It is not appropriate to consider

each pair of the set independently, as all of the sequences are coupled by their evolutionary heritage.

Luckily, we already addressed this issue in earlier work, where we used estimation maximization to

optimize mutation matrices based on larger sets of homologous proteins [14]. Our approach is to

directly model the evolutionary process, considering the probability that the set of current sequences

would result by summing over all possible evolutionary paths. The optimal mutation matrix is the

matrix that maximizes this probability.

In this article, we describe site-class speci�c mutation matrices that represent the mutation rates

with only three to �ve adjustable parameters [17]. This is done by considering that the �tness of any

amino acid for any location in the protein is a simple functional form of the physical-chemical properties

of that amino acid. We then use the Boltmann equation and Metropolis kinetics to convert these

�tnesses into mutation matrices. As a result, we are able to include site-heterogeneity directly in the

model, and still have a small enough set of adjustable parameters to optimize the model for a speci�c

class of proteins, the envelope (env) proteins of HIV-1. We demonstrate that, in spite of having an order

of magnitude fewer adjustable parameters than even a single mutation matrix, we are able to better

represent the evolutionary data for this class of proteins [17]. We then demonstrate the applicability

of this model by showing that our model better explain the mutations of the evolutionarily-distinct

HIV-2 env proteins. Finally, we apply this model to explore the phylogenetic relationships between

the subtypes of HIV-1.

2 Theory

2.1 The model

As mentioned in the introduction, we consider that the protein consists of di�erent types of locations

under di�erent forms of evolutionary pressure, categories that we call \site classes". Each site class

Sk is characterized by an individual mutation matrix Mk
i;j describing the probability that an amino

acid Ai would mutate to amino acid Aj in a given period of evolutionary time. The probability that

any location in the protein would belong to site class Sk is equal to P (k). As all locations belong to

some site class, X
k

P (k) = 1 (1)

We make no attempt to de�ne the site classes a priori, letting them be de�ned by the optimization

procedure. In this way we do not need to know or postulate anything about the structure or function

of the proteins.

We consider that the physical-chemical properties of each amino acid Ai can be represented by a

set of factors f�
i g. These factors could presumably be anything, from size to charge to hydrophobicity

to �-helical propensity. We further postulate that Fk(Ai), the �tness of any amino acid Ai in site

class Sk, can be represented as a simple site-class dependent function of these factors. We assume for

simplicity that these factors enter into the �tness in an additive way, so that we can write

Fk(Ai) =
X
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where �k;
 and �
opt
k;
 are parameters that depend upon the site class Sk. As can be seen, the �tness of

all of the amino acids for sites in this particular site class can be de�ned once the values of �k;
 and

�
opt
k;
 are speci�ed.

It is not a trivial problem to decide what physical-chemical factors to include in our model. As many

of the measurable amino acid properties are highly correlated, we take advantage of the work of Kidera

et al., who derived four orthogonal indices that encompassed most of the variation over a set of 180

di�erent amino acid properties [13]. These factors correlated predominantly with �-helical propensity,

bulk, �-sheet propensity, and hydrophobicity. We can simplify the model further by considering our

earlier work, that showed that hydrophobicity and size tended to be more conserved than secondary-

structure propensity [16]. We then consider that Fk(Ai) only depends upon the hydrophobicity and

the size, as characterized by the appropriate Kidera factors, �Hi and �Bi , respectively. As a result, the

�tness can be de�ned by only two or four adjustable parameters, depending upon whether a linear

�tness function (equation 3) or quadratic �tness function (equation 4) is used.

We assume that the probability that any amino acid is found in a location characterized by a given

site class is a Boltzmann-function of the �tness

P k(Ai) =
eFk(Ai)P
i0 e

Fk(Ai0 )
(5)

(As large �tness values are favorable, the sign of the exponential is opposite to the normal Boltzmann

formula.) Alternatively, the Boltzmann function can be inverted and the �tness function de�ned in

terms of the probability for a given amino acid to be found in that location.

It is reasonable to expect that mutations would obey detailed balance, that is, P k(Ai)M
k
i;j =

P k(Aj)M
k
j;i. If we in addition assume that all favorable mutations are accepted at a constant rate �k,

it can be shown that site-mutations must obey Metropolis kinetics [20], where unfavorable mutations

are accepted at an exponentially-decreasing function of the change in �tness

Mk
ij =

(
�k j Fk(Aj) > Fk(Ai)

�k e
(Fk(Aj)�Fk(Ai)) j Fk(Aj) � Fk(Ai)

(6)

Once the �tness functions are set by �k;
 and �
opt
k;
 , the mutation matrix only requires �xing one more

parameter, the maximum �xation rate �k. The evolutionary model is then completely de�ned by the

set of �k;
 and �
opt
k;
 values, by the values of �k, and the values of P (k) provided that they satisfy

equation 1. For instance, the evolutionary model used for the phylogenetic work described below has

a total of nine site classes; four with linear dependences on hydrophobicity and bulk, and �ve with

quadratic dependences on these factors. The resulting model has a total of 45 adjustable parameters,

compared with 380 for a single traditional mutation matrix that neglects site-heterogeneity.

2.2 Optimization and testing

We use our previously-developed estimation-maximization method to set the various parameters in

the model [14, 17]. We construct a phylogenetic tree for each set of homologous proteins using the

program ClustalW [26]. We then analyze each location in the set of homologs separately.

Consider a typical protein location l, with four homologous proteins, as shown in Figure 1, where

the current sequences at that location are represented by fAlg
0, in this case consisting of two alanines,

one glycine, and one leucine, at nodes D, E, F, and G, respectively. (The prime indicates that the set

of amino acids only represents the amino acids at the root of the tree.) If we knew the identity of

the residues at the other nodes in the tree, we could easily calculate the probability of that particular



set of mutations necessary for the current-day residues to exist at the leaves of the tree. As we do

not know the identities of these other residues, we have to sum over all of the possibilities at each

position. If there were only a single mutation matrix we could write the likelihood of fAlg
0 given

mutation matrix Mi;j as

P (fAlg
0jMi;j) =

X
AA;AB ;AC

P (AA) (7)

�M
AA;AB

(dAB) M
AB;Ala(dBD) M

AB ;Ala(dBE) M
AA;AC

(dAC) M
AC ;Gly(dCF) M

AC ;Leu(dCG)

where M
AA;AB

(dAB) is the probability that amino acid AA would mutate to AB in evolutionary time

dAB, where dAB is the time between nodes A and B, computed by taking mutation matrix Mi;j to

the appropriate power.

A

B C

D E F G
AlaAla Gly Leu

Figure 1: Example evolutionary relationship between four current sequences, represented as nodes D, E,

F, and G, and their root sequences, represented by nodes A, B, and C.

For our model with a variety of site classes, each characterized by mutation matrix Mk
i;j , equation

7 is summed over all of the di�erent site classes

P (fAlg
0) =

X
k

P (fAlg
0jMk

i;j) P (k) (8)

P (AA) in equation 7, now given by the site-class speci�c P k(AA), is computed using equation 5. The

total probability that all of the sets of homologous proteins would arise from our evolutionary model

is computed by taking the product of P (fAlg
0) over all locations l in all of the sets of homologous

proteins. The optimal model, then, is the model that maximizes this total probability. Optimization of

the adjustable parameters de�ning the model was performed using a sequential quadratic programming

algorithm [7] from the NAG software package (Numerical Algorithms Group Ltd, Oxford, UK). The

ability of a given model to represent the data is presented as a Q value, de�ned byQ = log[P (Model)]�

log[P (Random)], where log[P (Model)] is the log of the probability that the given model would produce

the data, and log[P (Random)] is the probability that the data would result from purely neutral drift

where all mutations were equally likely.

In all such models, especially those adopted to limited data sets, it is important to understand if

we are learning mutational patterns characteristic of a broader set of proteins or simply memorizing

the particular proteins used in the optimization. It is then important to construct an equivalent set

of proteins of the same class, but with a completely disjoint evolutionary, to verify the model. The

probability for this test set can be computed using equation 8, and the Q values for di�erent models

compared.



2.3 Phylogenetic reconstruction

The sets of mutation matrices can �nd applications in all of the typical applications for mutation

matrices, including homolog recognition, ancestral reconstruction, and the construction of phylogenetic

trees. We concentrate on the latter application.

Although our model could be easily adapted to maximum-likelihood methods, we initially imple-

mented a distance-matrix method. P (Al;x;Al;yjdx;y), the probability that residues Al;x and Al;y would

occur at location l in two proteins, x and y, if the two sequences were separated by a distance dx;y is

P (Al;x;Al;yjdx;y) =
X
k

P k(Al;x) M
Al;x;Al;y

(dx;y) P (k) (9)

The total probability for the two sequences to be separated by distance dx;y is obtained by taking the

product of P (Al;x;Al;yjdx;y) over all locations in the aligned set of proteins. The most likely distance

can then easily be obtained by �nding the value of dx;y that optimizes this probability.

In the application described below, we want to �nd the distance between subclades comprised of

multiple members. Rather than compute the most likely distance between all members of the various

subclades, we instead �nd the optimal distance between the roots of these subclades. The extension

of equation 9 is straight-forward, assuming the phylogenetic relationship between the members of the

subclade are known, and a root node identi�ed. First, P (fAg0l;xjk;Ar) is computed, representing the

probability that current-day amino acids fAg0l;x would be found at position l of the leaves of the tree

for subtype x given that the root sequence to the subtype contained Ar at that location and the

location could be described by site class Sk. As an example, for the set of sequences represented in

Figure 1,

P (fAg0l;xjk;Ar) =
X

AB ;AC

Mk
Ar;AB

(dAB)M
k
AB ;Ala

(dBD) (10)

�Mk
AB ;Ala

(dBE)M
k
Ar ;AC

(dAC)M
k
AC ;Gly(dCF)M

k
AC ;Leu

(dCG)

P (fAg0l;x; fAg
0

l;yjdx;y; k), the probability that current sequences of subtype x at location l would be

given by fAg0l;x and current sequences of subtype y at the same location would be given by fAg0l;y given

a distance dx;y between the two root sequences if this location belongs to site class Sk, is calculated

by summing over all possible amino acids that could be in the two root sequences, yielding

P (fAg0l;x; fAg
0

l;yjdx;y; k) = (11)X
Ar ;A0

r

P (fAg0l;xjk;Ar) P (fAg0l;yjk;A
0

r) P k(Ar) Mk
r;r0(dx;y)

Again, we can do a weighted sum over all possible site classes in order to get the total probability

irrespective of site class, P (fAg0l;x; fAg
0

l;yjdx;y).

P (fAg0l;x; fAg
0

l;yjdx;y) =
X
k

P (fAg0l;x; fAg
0

l;yjdx;y; k) P (k) (12)

We can then take the product of P (fAg0l;x; fAg
0

l;yjdx;y) over all locations in the pair of proteins, and

�nd the distance dx;y that maximizes this product, in order to obtain the most likely evolutionary

distance. Distances obtained between all of the subtypes can then be used to generate a phylogenetic

tree, using for instance the Fitch routine from the Phylip package [4].

3 Results

3.1 Simple Models for Speci�c Data Sets

With the reduced number of parameters, we can create speci�c mutation models for speci�c sets of

proteins. To demonstrate this, we constructed data sets of envelope (env) proteins from HIV-1 and



Type of Optimization Test data set
Model Data set HIV-1 env HIV-2 env

Dayho� mutation matrix [3] 1384 1858
mutation matrix General 1665 2179
mutation matrix HIV-1 env 2249 2578

2 site classes HIV-1 env 1764 2248
3 site classes HIV-1 env 2096 2713

5 site classes HIV-1 env 2192 3026

7 site classes HIV-1 env 2294 3164

9 site classes HIV-1 env 2350 3276

11 site classes HIV-1 env 2475 3382

Table 1: Q values for mutation matrices and simple models, calculated over a data set consisting of env

proteins from HIV-1 or HIV-2. The various models were either optimized over a general protein data set

(\Gen") or a data set consisting only of env proteins of HIV-1. Higher numbers correspond to a higher

likelihood that the model would generate the current sequences. Bold faced numbers indicate those models

with Q scores superior to any of the mutation matrices, including those optimized over the HIV-1 env data

set. As the Q score is dependent on the number of homologs in the set as well as the length of the proteins,

numbers in di�erent columns cannot be compared. Results using the Dayho� PAM 20 matrix are shown

for comparison [3]

HIV-2. We constructed a number of di�erent models with up to 11 site classes (with four linear

and seven quadratic �tness functions), all depending upon hydrophobicity and bulk. Even the most

complicated model had only 57 adjustable parameters. The model was then optimized for the HIV-1

env proteins. The resulting model was then compared with other models in representing the data from

the HIV-2 env protein evolution. The results, represented as Q values, are presented in Table 1 [17].

As expected, the mutation matrices optimized over the HIV-1 env proteins were able to out-perform

the more general mutation matrices, over both the HIV-1 and the HIV-2 env test sets. As shown,

even with many fewer parameters, the simple model with seven or more site classes had higher Q

values over the HIV-1 test set than any of the mutation matrices, even those optimized for this test

set. And the reduced number of parameters reduced memorization and enhanced generalization, so

that even the three site class model was able to out-perform all of the matrices over the HIV-2 env

data base. This indicates that the rather simplistic assumptions made in the model { the assumption

that the �tness is a simple function of hydrophobicity and size, and that the mutation rates follow

simple Metropolis kinetics { is better able to model the evolution than the more complicated mutation

matrices which consider amino acids individually yet ignore site heterogeneity.

3.2 Phylogenetic reconstruction

In order to demonstrate the use of our simple model, we applied it to the phylogenetic analysis of the

various subtypes of the HIV-1 virus. Over 10 subtypes have been found, with the majority classi�ed as

part of the major group M, the remainder in the rarer outlier group O. M-group subtypes A-E are the

most common. Envelope protein sequences from di�erent subtypes are approximately 30% di�erent,

while intrasubtype variation is on the order of 10-20%. Variation in the sequences of some of the other

proteins is more limited. Understanding the phylogeny of these subtypes is important in understanding

how AIDS spreads, especially as treatment options may depend upon phenotypic factors that di�er

between subtypes. A variety of phylogenies have been proposed, but no tree structure has proven

de�nitive.

One major advantage of our approach is our ability to customize evolutionary models for particular

classes of proteins. Optimizing the model, however, requires a phylogenetic tree. We took advantage of



the fact that the relationship between sequences within each subtype is more clearly de�ned, and can

be reconstructed with reasonable accuracy by standard methods. Our model could then be optimized

to describe the evolutionary patterns observed within each of the subtypes, and used to explore the

relationship between subtypes. We aligned the sequences and generated a phylogenetic tree for each

of the subtypes using the program ClustalW [26]. The midpoint of the longest node was taken as

the root of that subtype. A nine-site model was then optimized for the sequences in subtypes A, C,

and D, by maximizing the total probability that these sequences would result given our model. For

veri�cation, we tested how this model would match the evolutionary patterns of subtypes B, E, F,

G, H, and O. With the exception of subtype O, in all cases our model provided higher probabilities

than any of the more traditional mutation matrices derived from a general data set. The fact that our

model was noticeably poorer for subtype O was in itself interesting, as it is believed that O may have

started to infect humans more recently than other subtypes [9]. If it is true that one of the pressures

driving variation is the need to evade the immune system, it may be that the evolutionary process for

these proteins might be somewhat di�erent depending upon how long they have infected a particular

host.

The distances between the roots of the various subtypes were calculated as described above, and

then input into the Fitch program of the Phylip package [4]. The resulting optimal phylogenetic tree

is shown in Figure 2, with the subtypes represented by triangles to re
ect the fact that these are the

roots of the subtypes, which subsequently diverge into the currently known members.

H

A

D
F

BC

G

O

E

4% amino acid
divergence

Figure 2: Unrooted tree describing the phylogenetic relationship of the HIV-1 subtypes as computed using

our site-dependent model.

A number of interesting results are seen in our phylogenetic reconstruction. While previous trees

tended to group subtypes B and D together, the close relationship of subtype C to this group is

surprising. Similarly, the placement of E further from the other subtypes is in contrast to what has

been proposed based on other models. These conclusions are preliminary, and can be explored further

with maximum-likelihood models and analyses of other HIV-1 protein sequences.

4 Conclusion

In this paper, we describe a method for modeling protein evolution that explicitly takes into account

the physical-chemical properties of the constituent amino acids. By doing this, we can greatly reduce

the number of adjustable parameters, allowing us to develop models for speci�c proteins and include

the e�ects of site-heterogeneity. The result is a model that better represents the evolutionary patterns,

even with many fewer parameters. These matrices can have a wide range of possible uses. In this

paper, we develop one application { the reconstruction of the evolutionary relationship between the

HIV-1 subtypes. Our results suggest interesting di�erences from other phylogenetic trees that have

been proposed previously.
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