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Abstract

Selecting a good collection of primers is very important for polymerase chain reaction (PCR)

experiments. Most existing algorithms for primer selection are concerned with computing a primer

pair for each DNA sequence. In generalizing the arbitrarily primed PCR, etc., to the case that all

DNA sequences of target objects are already known, like about 6000 ORFs of yeast, we may design

a small set of primers so that all the targets are PCR ampli�ed and resolved electrophoretically in a

series of experiments. This is quite useful because deceasing the number of primers greatly reduces

the cost of experiments. Pearson et al. [7, 8] consider �nding a minimum set of primers covering

all given DNA sequences, but their method does not meet necessary biological conditions such as

primer ampli�cation and electrophoresis resolution.

In this paper, based on the modeling and computational complexity analysis by Doi [2], we

propose algorithms for this primer selection problem. These algorithms do not necessarily minimize

the number of primers, but, since basic versions of these problems are shown to be computationally

intractable, especially even for approximability with the length resolution condition, this is inevitable.

In the algorithms, the ampli�cation condition by a primer pair and the length resolution condition by

electrophoresis are incorporated. These algorithms are based on the theoretically well-founded greedy

algorithm for the set cover in computer science. Preliminary computational results are presented

to show the validity of this approach. The number of computed primers is much less than a half of

the number of targets, and hence is less than one forth of the number needed in the multiplex PCR.

1 Introduction

The polymerase chain reaction (PCR) ampli�es DNA sequences e�ciently and this experiment has

been used for various purposes. Its use will be further enhanced as many DNA sequence data become

available.

Among many applications of the PCR experiment, genome typing, DNA �ngerprints, etc., require

PCR ampli�cations of many di�erent target objects, and producing these ampli�cations in a series of

experiments by grouping them can save experimental costs greatly. This saving can be achieved by

designing a good collection of primers for PCR experiments.

Designing such a good primer set is a challenging problem, and this paper proposes greedy algo-

rithms for �nding a small collection of primers satisfying cover and length resolution conditions in

PCR experiments. Some promising results of preliminary computational experiments are given.

In the �eld of genome informatics, this primer selection problem might be rather new, and we need

more explanations to state our results in more detail. Hence, from here in this introduction, we try

to explain the backgrounds and requirements of this problem, in the following subsections, and then

state our results.
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Figure 1: DNA sequences and primers

1.1 PCR

PCR ampli�es the part of the DNA sequence between these primers. One primer is called a sense

primer, and the other primer is called an antisense primer. Primers have an orientation, as depicted

in Figure 1.

PCR is usually used to amplify a particular region in a target sequence. Therefore a primer pair

that matches one position of a target sequence is selected. If selected primer matches many positions

of DNA sequences, many subsequences may be ampli�ed. The length of primers is usually set to be

> 17 mer for human genome, because the random permutation of 17 mer (417 � 1:6�1010) will match

less than once for total human genome (3� 109 bp).

1.2 PCR with Many Primers

As stated in the beginning of this introduction, it is often necessary to produce PCR ampli�cations

of many di�erent target objects. There have been proposed many methods for this.

The multiplex PCR ampli�es multiple genes with multiple sets of primers in a single reaction

(Chamberlain, Gibbs, Ranier, Nguyen and Caskey [1]), where a pair of primers is designed for each

ampli�ed region in this PCR and all the primers are distinct to one another. Hence, in this case, the

length of primers is set 17 to 20. The number of primers is exactly twice as many as the number of

target objects, and is �xed.

On the other hand, Welsh and McClelland [10] proposed arbitrarily primed PCR (AP-PCR, in

short). Short (8 to 12 nucleotides) arbitrary primers are used in this PCR. These short primers match

at several places and produces more fragments, while the number of necessary primers to amplify each

target may be much smaller than in the multiplex PCR.

In both cases, PCR products are visualized by agarose gel electrophoresis and these are utilized

for DNA �ngerprinting, etc. For example, Ito and Sakaki [3] proposed Fluorescent Di�erential Display

(FDD) by using arbitrarily primed RT-PCR. The number of applications is really enormous.

1.3 Primer Selection: Necessity of Reducing the Number of Primers

The following primer selection problem was communicated with T. Ito (see the acknowledgment).

If no prior sequence information is required, AP-PCR may only be applicable. But now, all

sequences are known for yeast, E. coli, etc., and AP-PCR may be extended further. If arbitrarily

primers for AP-PCR are replaced with primers obtained from the known sequence data, PCR products

can be computed, which can be compared with PCR experimental results to identify missing objects,

etc.

Thus, the primer selection design is getting more important, especially the design for multiple

target objects when iterations of ampli�cations by primers exist. If the minimum set of primers to

amplify all sequences in a distinguishable way is obtained, the costs for experiments are decreased. For

example, yeast has about 6000 ORFs. This number is too large to obtain distinguishable ampli�ed

regions for all ORFs whose lengths are di�erent from one another in a single PCR experiment under



the current technology of electrophoresis, but a series of multiple experiments can resolve this di�culty.

Minimizing the primers in this series of experiments directly a�ect the experiment cost.

This paper basically considers a case that many ORFs are ampli�ed by applying multiple primers

simultaneously in a single experiment. This is the most fundamental case, and can be extended to the

case of series of experiments, whose details will be described elsewhere.

1.4 Related Works on Primer Selection

Some computer programs for primer selection are designed in [5, 9], etc. These programs are used

for designing a pair of primers for a single target gene. These �nd pairs obeying given biological

constraints and displays information about the ampli�ed product.

Nicod�eme and Steyaert [6] designed a program for the multiplex PCR. As mentioned above, in

the multiplex PCR, the number of primers is �xed to the double of the number of targets, and

hence minimizing the number of primers is not considered. This program designs the sets of primers

which obtain ampli�ed regions for all genes in multiple experiments so as to minimize the number of

experiments, which is a main part of the proposed algorithm. The lengths of ampli�ed regions in a

experiments are di�erent each other in each experiment in the series.

Pearson et al. [7, 8] formulated a minimum primer set which covers all DNA sequences, and

analyzed it, which was a much simpler version than in our paper. Their paper does not consider

orientations of primers and length constraint for electrophoresis analysis. From the viewpoint of com-

putational complexity, they analyze these formulated problem, prove approximability of the problem

using directly the set cover reduction, and construct an exact branch and bound algorithm and an

approximation algorithm with lnn approximation ratio, where n is a number of DNA sequences.

1.5 Our Results

We have formulated minimizing the number of primers for PCR and proved complexity properties in

Doi [2]. The formulations are much more rigorous than Pearson et al. [7, 8]. Doi [2] mainly shows

complexity properties, and mentions potential applicability of algorithms for the set cover problem in

computer science in a di�erent manner with [7, 8].

In this paper, based on these modeling and computational complexity analysis in [2], we propose

greedy algorithms for this primer selection problem. These algorithms do not necessarily minimize

the number of primers, but, since basic versions of these problems are shown to be computationally

intractable, and in fact, the problem becomes much harder with the length resolution constraint, which

is shown by recent approximability results [2], this would be inevitable.

In the algorithms, the ampli�cation condition by a primer pair and the length resolution condition

by electrophoresis are incorporated. These algorithms are based on the theoretically well-founded

greedy algorithm for the set cover in computer science. Preliminary computational results are pre-

sented, which are quite promising. The number of computed primers is much less than a half of the

number of targets, and hence is less than one forth of the number in the multiplex PCR.

The paper proceeds as follows. In Section 2, biological constraints which are considered this paper

and problem formulation and properties for these problems in are summarized. The approximate

property of the simple greedy algorithm was proved in [2]. In Section 3, we construct a simple greedy

algorithm for primer selection as a basis, and modify this algorithm for various biological constraints.

Experimental results for these algorithms are described in Section 4.

2 Biological Constraints and Problem Formulation

2.1 Biological Constraints for PCR Primer Selection

In this paper, the following biological constraints on primers are considered.



GC content primers with 40-60% GC content are widely used

Lengths of primers In this paper, a primer can match multiple positions in DNA sequences. We

can set short length (8-12) for primers

Complementarity sequence The set of primers must not contain self-complementary sequence and

complementary sequences. (For example, 5'-GCCTAGGC-3' is a self-complementary sequence,

5'-GACAATGC-3' and 5'-GCATTGTC-3' are complementary sequences.)

Length of ampli�ed regions PCR products which are between 50 and 500 base pairs are desired.

In this paper, the lower bounds for ampli�ed regions are considered.

Di�erence of lengths of ampli�ed segments PCR products should have di�erent lengths with

each other to analyze products by electrophoresis. (In practical, it is preferable that the di�erence

of the lengths of the PCR products is 5.)

Details of the biological constraints for designing primer are described in [4]. We will consider the

other biological constraints in a full version.

2.2 Formulations and Properties

For various biological constrains, Doi [2] formulated some problems and proved these complexity

properties. In this subsection, these results are summarized.

We are given n DNA sequences (1 � j � n). The length of DNA sequence j is denoted by mj.

(j; p) means position p of DNA sequence j. A primer Si is a DNA sequence of constant length (much

shorter than mj). jSij denotes the length of primer Si. Consider a primer set S = fS1; :::; Si; :::; Slg.

(j; p;r/l) 2 Si means primer i match position p of DNA sequence j (direction is r(right) or l(left)),

that is, for k = 1 to jSij the (p+ k� 1)th character (resp. the (p� k+1)th character) of the sequence

j is identical to the kth character of the primer i in the case of r (resp. l).

De�nition 1 (Primer Selection Problem (PSP)) Primer Selection Problem (PSP) is �nding min-

imum primer subset S0 � S which covers all DNA sequences and putting DNA subsequence between

sense primer and antisense primer for all DNA sequences, that is,

8j 9Si; Si0 2 S
0

; (j; p1; r) 2 Si; (j; p2; l) 2 Si0 ; p2 � p1 + 1 > 0:

(The length of ampli�ed segment is p2 � p1 + 1.)

Theorem 1 ([2]) PSP has a polynomial approximation greedy algorithm with a factor lnmn (m =

max(m1; :::;mn)).

Theorem 2 ([2]) PSP cannot be approximated in polynomial time within a factor (1� �) lnn for any

� > 0 unless NP � TIME(nO(log log n)).

To consider a length of DNA ampli�cation, we must handle the next constraint.

De�nition 2 (Ampli�cation Constraint between sense and antisense primers) If a DNA se-

quence is ampli�ed by primers (j; p1; r) and (j; p2; l) in PCR experiments, primers which match with

position p (p1 � p � p2) of DNA sequence j cannot exist.

In Figure 2, the part between S1 and S2 is ampli�ed and part between S1 and S3 is not ampli�ed

(in practice the latter part is slightly ampli�ed in PCR experiments. But the majority is dominated

by the former and hence the latter is neglected.)
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Figure 2: Ampli�cation Constraint

De�nition 3 (Primer Selection Problem with Minimum Length Constraint (PSPMLC))

Primer Selection Problem with Minimum Length Constraint (PSPMLC) is, for a given k, the �nding

a minimum primer subset S0 � S which covers all DNA sequences, as in PSP, and putting DNA

subsequence at least length k between sense and antisense primer for all DNA sequences. (p2�p1+1 � k

instead of p2 � p1 + 1 > 0 in PSP)

This problem, PSPMLC, models a fact that ampli�ed parts by a pair of primers Si and Si0 have

length at least 50.

If we ignore the ampli�cation constraint, the next theorem is obtained.

Theorem 3 ([2]) PSPMLC has a polynomial approximation greedy algorithm with a factor lnmn

(m = max(m1; :::;mn)).

Theorem 4 ([2]) PSPMLC cannot be approximated in polynomial time within a factor (1 � �) lnn

for any � > 0 unless NP � TIME(nO(log log n)).

De�nition 4 (Primer Selection Problem with distinguishable Length Constraint (PSPLC))

The Primer Selection Problem with distinguishable Length Constraint (PSPLC) is a primer selection

problem and the lengths of DNA subsequences between sense and antisense primers are all di�erent,

that is,

1. 8j 9Si; Si0 2 S0; 9(j; p1; r) 2 Si; (j; p2; l) 2 Si0 ; p2 � p1 + 1 > 0;

2. 8p0 (p1 � p0 � p2) (j; p
0; r); (j; p0; l) are not in sets which are elements of S0. (ampli�cation

constraint),

3. 8j0( 6= j)(j0; p3; r); (j
0; p4; l) which satisfy the ampli�cation constraint (2) and p4 � p3 + 1 6=

p2 � p1 + 1

This problem, PSPLC, models a requirement that may be DNA sequences distinguished with

one another by the lengths of their ampli�ed segments using the electrophoresis. If one ampli�ed

segment of di�erent length exists for each DNA sequence, DNA sequences can be identi�ed using the

electrophoresis.

Theorem 5 ([2]) PSPLC cannot be approximated in polynomial time within a factor n
1

2
�� for any

� > 0 unless NP = coRP .

Theorem 6 ([2]) PSPLC cannot be approximated in polynomial time within a factor n
1

8
�� for any

� > 0 unless P = NP .

3 Algorithms

In previous section, variations of primer selection problems are showed. We solve these problems by

some greedy algorithms which are used for proof of Theorems 1, 3. Besides, we modify these algorithm

to satisfy constraints.
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Figure 3: Covered elements for a primer

Basic idea for algorithms is that the primer selection problem is regarded as the set cover problem.

The position p of the DNA sequence j (j; p) is regarded as the element of underground set. Primers

are regarded as subsets. Figure 3 shows covered elements for a primer.

To be exact, (j; p) (1 � j � n; 1 � p � mj + 1) are elements in the underground set for the

set cover problem. (We add (j; p + 1) for all DNA sequence j.) If (j; p;r) 2 Si, primer Si covers

(j; p+1); (j; p+2); :::; (j;mj); (j;mj+1). If (j; p;l) 2 Si, primer Si covers (j; 1); (j; 2); :::; (j; p�1); (j; p).

All (j; p) (1 � j � n; 1 � p � mj + 1) are covered if and only if ampli�ed sequences exist in all

DNA sequences.

We apply the greedy algorithm to this problem.

1. Scan DNA sequences and pick up primers which satisfy biological conditions. Make the list of

candidates of primers.

2. Select the primer Si that covers the largest number of uncovered elements. Delete Si from the

candidate set. Add Si to the solution.

3. Repeat 2 until all elements are covered.

We call this algorithm basic algorithm. Algorithms in this paper are extension of this greedy

algorithm.

Algorithms consider the constraints on GC content and lengths of primers only in step 1 where

candidates of primers are obtained. Modi�cation to the basic algorithm is necessary for the other

constraints. Basic idea of modi�cation is constructing prohibitive conditions in step 2 (except the

case in Section 3.2.1). Candidates of primers which satisfy prohibitive conditions can not be selected.

Hence, the step 2 is replaced with the following 20

20. Select the primer Si that covers the largest number of uncovered elements does not satisfy

prohibit conditions. Add Si to solution.

As prohibitive conditions are added, solutions which cover all DNA sequences may not be obtained.

If candidates of primers do not exist, algorithms must end, and we use the following 30 instead of 3.

30. Repeat 20 until all elements are covered or candidates do not exist.

We consider various biological constraint and modify the basic algorithm in the following subsection.

3.1 Complementary Sequence Property

Self complementary sequences are not appropriate candidates for primers. We remove the sequences

from candidates of primers in the step 1.

We modify the basic algorithm to that the sequence whose complementary sequence was selected

can not be selected. For example, if 5'-GACAATGC-3' was selected for primer, 5'-GCATTGTC-3'

can not be selected.

This is �rst prohibitive condition for the basic algorithm. We call this condition the complementary

condition.
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3.2 Minimum Length Constraint

We consider two types of modi�cations for minimum length constraint.

3.2.1 Without Ampli�cation Constraint

If the ampli�ed region has not length enough, this is useless. We must modify the algorithm to obtain

ampli�ed regions whose lengths are long enough. (Given k for minimum length of ampli�ed segment.)

First we explain the algorithm for the proof of Theorem 3. This algorithm is that covering elements

for primers are modi�ed in the basic algorithm. If (j; p;r) 2 Si, primer Si covered (j; p + 1); (j; p +

2); :::; (j;mj); (j;mj+1) in the basic algorithm. But in this algorithm, if (j; p;r) 2 Si, primer Si covered

(j; p+ k + 1); (j; p+ k + 2); :::; (j;mj + k); (j;mj + k + 1).

This modi�cation (is called the covered elements modi�cation) do not consider ampli�cation con-

straint, and hence short segments may be ampli�ed.

3.2.2 Satisfying Ampli�cation Constraint

The following prohibitive condition is added to satisfy minimum length constraint. We consider

selecting primer which makes short ampli�ed sequences is prohibited. (Given t for minimum length

of ampli�ed segment.) To be exact, if primer Si ((j; p;r) 2 Si) was selected, S0

i ((j; p
0;r/l) 2 S0

i,

p � p0 < p + t) can not be selected. If primer Si ((j; p;l) 2 Si) was selected, S
0

i ((j; p
0;r/l) 2 S0

i,

p� t < p0 � p) can not be selected.

We call this prohibitive condition the short length condition.

3.3 Di�erence of lengths of ampli�ed segments

If the following prohibitive condition is added, the ampli�ed segments are di�erent from each other

in their lengths. If lengths of segments which were ampli�ed by the set of a candidate sequence and

primers which was selected by algorithm are not di�erent from each other, the candidate segments

can not be selected this time.

We call this prohibitive condition the resolution condition.

4 Experimental Results

We apply these greedy algorithms to randomly selected 500 sequences out of about 6000 ORFs of

yeast from GenBank. We set GC content is 45-55% in a primer and length of primer is 8 or 15. We

consider 50 and 100 lower bounds. We pay attention to ampli�ed segments whose lengths are between

50 and 500.

In the following tables, symbols mean these:

k: parameter for the covered elements modi�cation

t: parameter for the short length condition

nd: number of DNA sequences which have di�erent lengths of ampli�ed segments from the other

ampli�ed segments

�n: number of DNA sequences which have not ampli�ed segment



Table 1: E�ects for the complementary condition (Lengths of primers = 8)

basic algorithm + complementary condition

#primers 102 106

#positions that primers match 3949 3965

#ampli�ed segments 1269 1053

#ampli�ed segments (lengths < 50) 984 456

#distinct ampli�ed segments by lengths 154 170

nd 135 135

nd(50; 500) 111 116

�n 0 0

n(1; 50) 269 124

n(1; 100) 323 189

Table 2: E�ects for the covered elements modi�cation and the short length condition (Lengths of

primers = 8)

k 0 50 50 100 100

t 0 0 50 0 100

#primers 106 117 186 129 183

#positions that primers match 3965 4348 3274 4601 2561

#ampli�ed segments 1053 1154 834 1224 602

#ampli�ed segments (lengths < 50) 465 513 0 535 0

#distinct ampli�ed segments by lengths 170 143 174 157 206

nd 135 121 146 127 167

nd(50; 500) 111 95 115 118 120

�n 0 0 15 0 98

n(1; 50) 124 111 0 100 0

n(1; 100) 189 201 94 169 0

n(i; j): number of DNA sequences which have only ampli�ed segments whose lengths are between i

and j

nd(i; j): number of DNA sequences which have di�erent lengths of ampli�ed segments from the other

ampli�ed segments and these lengths are between i and j

Table 1 shows the e�ects for the complementary condition. The basic algorithm can cover 500

sequences by about 100 primers. By modify this algorithm by the complementary condition, the

number of primers is almost same. If self-complementary sequences and complementary sequences are

removed, short ampli�ed segments are decreased. After this, all algorithms in this paper adopt the

complementary condition.

Table 2 shows the e�ects for the covered elements modi�cation and the short length condition.

Short ampli�ed sequences are not decreased by the covered elements modi�cation. The short length

condition is necessary to satisfy lower bounds for ampli�ed regions. By the short length condition,

short length ampli�ed sequences are removed, but some DNA sequences remain uncovered.

The case of primer length 15 is also investigated. Table 3 shows this case. In this case, e�ects

for the covered elements modi�cation can be seen. Ampli�ed segments whose lengths less than 50

become half. This is because the number of positions which primers match in sequences is decreased.

In the case of the short length condition, almost all DNA sequences are also covered. The number of

the distinct DNA sequences by lengths are about 270, but about 150 sequences are distinct by long



Table 3: E�ects for the covered elements modi�cation and the short length condition (Lengths of

primers = 15)

k 0 50 50 100 100

t 0 0 50 0 100

#primers 804 843 823 847 833

#positions that primers match 1045 1098 1034 1093 1039

#ampli�ed segments 509 511 507 510 505

#ampli�ed segments (lengths < 50) 105 50 0 42 0

#distinct ampli�ed segments by lengths 268 275 286 273 281

nd 266 271 283 270 278

nd(50; 500) 118 117 122 111 113

�n 0 0 0 0 1

n(1; 50) 100 46 0 39 0

n(1; 100) 145 100 63 48 0

Table 4: E�ects for the resolution condition (Lengths of primers = 8)

k 50 100

t 50 100

resolution condition no yes no yes

#primers 186 174 183 50

#positions that primers match 3274 2414 2561 1299

#ampli�ed segments 834 453 602 243

#ampli�ed segments (lengths < 50) 0 0 0 0

#distinct ampli�ed segments by lengths 174 422 167 228

nd 146 317 167 199

nd(50; 500) 115 263 120 133

�n 15 170 98 199

n(1; 50) 0 0 0 0

n(1; 100) 94 30 0 0

ampli�ed segments.

Table 4 shows the e�ects for the resolution condition. By the resolution condition, all ampli�ed

segments have di�erent lengths. If k = t = 50, by the resolution condition, 263 DNA sequences

are distinct by lengths of ampli�ed segments between 50 and 500, and 263 pairs of primers are not

necessary, only 186 primers are necessary. (263 pairs of primers are necessary for multiplex PCR.) If

k = t = 100, by the resolution condition, 133 sequences are distinct. Because t = 100 in the short

length condition is too strong, no more than 50 primers can be selected.

As the basic algorithm is modi�ed, better solutions for biological constraints in 2.1 are obtained.

By the short length condition, short ampli�ed segments are removed. By the resolution condition,

many ampli�ed segments are distinct in length. Because short primers match many positions of

DNA sequences, the number of primers for covering can be decreased. On the other hand, many short

ampli�ed segments are obtained. As the short length condition and the resolution condition are added,

covering all sequences become di�cult. The modi�ed greedy algorithms can not obtain solutions which

satisfy constraints and cover all sequences. But 500 sequences can not distinct between 50 and 500

in one experiments. We consider it is enough for our aim that about 250 sequences are distinct by

lengths of ampli�cation segments from 50 to 500 in one experiment.



5 Conclusions and Future Works

We have considered minimizing the number of primers for PCR experiments. As the greedy algorithms

are modi�ed, solutions which almost satisfy biological constraints are obtained. But these algorithms

do not minimize the number of primers. It is necessary to analyze approximate properties of these

algorithms from the theoretical and practical viewpoints. We will consider improving solutions for

these algorithms by meta heuristics or other methods.

We will also consider take account of the other biological constraints and design the sets of primers

for multiple experiments.
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