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Abstract

The paper is concerned with a computational phase of the sequencing DNA chains by hybridiza-

tion. It is assumed that positive faults can occur in the hybridization experiment. An approach

based on a reduction of the problem to a variant of a Selective Traveling Salesman Problem and an

algorithm for solving the latter, have been proposed. The algorithm behaves extremely well, even for

a fault rate exceeding 50%.

1 Introduction

One of the most challenging issues in the area of molecular biology is to read (recognize) a structure of

a human genome (that is a DNA sequence). DNA sequencing aims at discovering the exact sequence of

nucleotides in rather short DNA chains (100-400 nucleotides long). (Longer sequences are assembled

with the use of di�erent approaches, cf. [23].) One of the variants of this method is sequencing by

hybridization (SBH), proposed among the others by Drmanac et al. [8], Khrapko et al. [18] Southern

et al. [27] and Markiewicz et al. [21].

In general, the hybridization experiment is based on the property of single stranded nucleic acids

to form a complex (antiparallel) with a complementary strand of a nucleic acid [5, 25, 28]. All short

fragments of nucleic acids (oligonucleotides) of length l are used in the hybridization experiment (so

called library of 4l di�erent oligonucleotides) and thus, the formation of the complex indicates the

occurrence of a sequence complementary to the oligonucleotide in the nucleic acid. It is detected by a

nuclear or spectroscopic detector. As a result of the experiment one gets a set (called spectrum) of all

l-long oligonucleotides which are known to hybridize with the investigated DNA sequence N of length

n (i.e., they are substrings of string N). In a case of ideal data we have thus j spectrum j= n� l+1. In

some cases, however, one can obtain less than n� l+1 fragments, either due to experimental problems

or as a result of the structure of sequence N (for example, it can contain repeated subsequences). In

this case negative faults occur. On the other hand, there can be also positive faults, i.e. not each

fragment (oligonucleotide) present in spectrum is a part of the original sequence.

Due to the di�erences in the thermodynamic stability of perfectly matched duplexes of the same

length l, resulting in the �rst instance from di�erences in a A/T, G/C content, it is not possible

to perform an ideal hybridization experiment, in general. The addition of chaotropic salts into the

hybridization mixtures allows to reduce this source of faults only to some extent [22]. However, it is

possible to perform hybridization experiment under such conditions (i.e. less stringent conditions) that

all l long oligonucleotides of probing library (chip) whose complementary oligonucleotides are present

in the DNA sequence N , even the one forming the least stable duplex, will be detected. On the other

hand, hybridization experiments should be performed in a way which will result in a minimum number

of experimental faults. One might assume that a hybridization experiment should supply a data set

which contains less faulty than correct l-mers and thus, in sequence N reconstruction procedure,



a maximum number of hybridizing l-mers should be used. (If a solid supported full combinatorial

library with all possible l long oligonucleotides is used in the hybridization experiment, then negative

experimental faults are excluded). This means that the negative faults of the experimental nature

can thus be avoided. For DNA sequences in which repeated subsequences of length larger than l are

not present, this allows to eliminate all negative faults. In the same time, performing a hybridization

experiment under stringent conditions will certainly result in positive faults.

A computational phase of the SBH method (i.e. a reconstruction of a DNA chain on the basis

of the obtained spectrum) can be done in polynomial time [24] in case of an ideal spectrum. More

di�cult (in fact NP-hard) [12, 13] are the cases where some faults occur. Several heuristics have been

proposed for the case where only negative faults appeared [1, 2, 4, 15, 18, 24]. Only a few papers have

dealt with a limited case of both positive and negative faults [9, 19], assuming that only the �rst or

the last bit (nucleotide) in the obtained data can be wrong. In the recent paper [3] a new method has

been proposed that takes into account both types of faults without any assumption on their type and

source. Its computational behavior is satisfactory for the fault rate achieving 10%.

As was discussed above, it is possible to tune the hybridization experiment in such a way that the

negative experimental faults can be avoided. In the present paper, we use this assumption to modify

the general method presented in [3]. It appears that in the case of only positive faults, the method

performs extremely well, even for the fault rate exceeding 50%.

In the next Section the method and its modi�cation will be described. Section 3 will contain

results of the computational experiments.

2 The Method

As we discussed, the problem to be considered may be formulated as follows. Given spectrum (a set

of l-mers that hybridized with an analyzed DNA sequence N) and length n of sequence N , reconstruct

the latter. The spectrum may contain positive faults. Our approach is based on an idea that when

reconstructing a DNA sequence, a maximum cardinality subset of l-mers from spectrum should be

used. Moreover, a number of nucleotides in the obtained sequence should not be greater than in the

source sequence. Joining two l-mers into a sequence is connected with a cost. Two l-mers of length l

may overlap on l�1; l�2; : : : ; or 0 nucleotides, respectively. The cost of joining two l-mers is equal to

l minus a number of nucleotides that overlap in these l-mers. For example, two l-mers CCAGA and

GATTC may overlap on two nucleotides and create a longer sequence CCAGATTC. Thus, a cost of

joining them is equal to 3. A sequence of length n obtained by joining l-mers which overlap with their

neighbors on l � 1 nucleotides, contains n� l + 1 l-mers. Usually l-mers being positive faults cannot

be overlapped on both their ends with proper l-mers from the spectrum.

We propose to formulate the problem of constructing a DNA sequence from a spectrum containing

positive faults as a variant of a Selective Traveling Salesman Problem (STSP). In a classical Traveling

Salesman Problem (TSP) there is given a complete directed or undirected graph where to each arc or

edge a cost is assigned. The goal is to visit every vertex in the graph exactly once and return to the

starting point in such a way that a sum of costs of traversed arcs or edges included in the directed

cycle is at its minimum. This problem is known to be strongly NP-hard, thus unlikely to admit a

polynomial-time algorithm [14].

The STSP is a modi�cation of the classical version. In this problem in addition to arc costs there

is de�ned a pro�t for each vertex. The goal is to visit as many vertices as possible. In other words,

a sum of pro�ts of visited arcs is maximum and the total cost of traversed edges does not exceed a

given value. In this version of the problem the �rst vertex must be also the last one.

If in the STSP the path is not required to be a cycle and each vertex pro�t is equal to 1, then the

new problem is equivalent to the DNA sequencing problem in the presence of positive and negative

faults. The method solving this problem has been presented in [3]. In this case each l-mer from the

spectrum corresponds to a vertex in the graph. Each arc incident with two vertices in the graph is



labeled by an overlapping cost of the two l-mers corresponding to these vertices. One should notice

that this cost depends on the order in which these two l-mers are joined. Hence the graph must be

directed. Moreover, there are no loops in this graph.

If in the above graph arcs corresponding to connections of l-mers overlapping on less than l � 1

nucleotides (i.e. which costs are greater than 1) have been removed from the graph, then this version

of STSP is equivalent to the DNA sequencing problem with only positive faults. Notice that this

graph is very sparse and a corresponding search tree consists of a small number of nodes. Computing

an e�ective upper bound in such a tree would be very time consuming. An eventual pro�t (a number

of cut o� nodes) obtained by using this bound would not justify computing it.

Note, that in a case when a path is a cycle this method can be used to sequence circular DNA

strands. We assume that l-mers are always maximally overlapped. For example, if there are two l-mers:

ACTTC and CTTCG then they overlap on four nucleotides and create longer sequence ACTTCG with

cost equal to 1.

Constructing a desired path in the formulated above variant of Selective Traveling Salesman Prob-

lem is equivalent to �nding a subset of cardinality n� l + 1 of l-mers from spectrum that hybridized

with unknown sequence N . Note that in this particular case the value of an optimal solution is known

(and equal to n � l + 1). Thus, this modi�ed version of STSP may be formulated as the following

system of linear equations and inequalities:
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where:

z - a cardinality of spectrum; its value is equal to or greater than n� l + 1,

V - a set of vertices (i.e. l-mers) of cardinality z,

xij - a boolean variable; it is equal to 1 if an arc joining vertices i and j is included in the solution;

otherwise it is equal to 0.



The �rst vertex (i.e. l-mer) of the path is assumed to be known. (Later we will show how to omit

this condition.) In the above formulation it is denoted by variables with index 1.

In the spectrum there are no negative faults hence a number of vertices selected in the traveling

salesman path (i.e. l-mers constituting sequence N) is equal to n� l+ 1. This condition is expressed

by equation (1). It is obvious that each l-mer in a solution, except for a starting one and an ending

one, must have exactly one immediate predecessor and exactly one immediate successor. Moreover,

the starting l-mer must have one immediate successor but no predecessors. Similarly, the ending l-mer

must have one immediate predecessor but no successors. Equation (2) guarantees that the starting

vertex has only one immediate successor in the solution. Similarly, equation (3) guarantees that in

the solution there is no predecessor of the starting vertex. Inequalities (4) and (5) ensure that each

vertex included in the solution, except for the starting one, has at most one immediate predecessor

and one immediate successor in the solution path. According to inequalities (6) there is only one

starting point in the path. Inequality (7) ensures that there is no separate cycle in the solution. S

is any subset of set V n fv1g. The left side of this inequality is a sum of degrees of all vertices in

S. From (4) and (5) it follows that this sum may take values at most equal to 2jSj. The right hand
side of this formula is a number of all arcs which have a starting vertex in V n S and an ending one

in S, multiplied by 2jSj. Hence, inequality (7) does not hold only in the case where there is no such

arc. If (2) - (6) hold, this situation would take place only if there has been a separate cycle in the graph.

To solve the above problem an algorithm based on the branch and bound approach is proposed.

The required length of sequence (n), the set of oligonucleotides (spectrum) and one element from

spectrum assumed to be an initial one, are known at the beginning of a searching process. One should

obtain �nal sequences, each of them of length equal to n, consisting of n� l+1 oligonucleotides from

spectrum. A search tree, which is built during this process, has elements of spectrum (l-mers - words

of length l) as nodes. A path consisting of visited nodes in the tree corresponds to an arrangement

of l-mers included into the sequence. The path begins with an initial oligonucleotide (l-mer) and is

built until it becomes an acceptable solution, or until further branching is not feasible. The algorithm

described in this section does not need any knowledge of an initial l-mer. If such an l-mer is not

indicated, the algorithm successively treats each oligonucleotide as an initial one. In this case each of

the l-mers becomes a root of a subtree built by the algorithm.

At each node the search tree is branched. A set of successors of any node is the same as in the

graph with an exception of vertices already visited. If during the search process a level n � l + 1 in

the search tree is achieved, a current path is remembered as a solution.

3 Computational Results

The described algorithm has been tested on DNA sequences obtained from GenBank, National Insti-

tute of Health, USA. Sequences coding human proteins have been chosen. Computational experiments

have been carried out on SGI Power Challenge in Poznan Supercomputing and Networking Center.

For these tests 10 DNA strings have been selected, for which there were no repetitions of 10-

mers among the �rst 409 nucleotides. In order to obtain spectra consisting of 100, 200, 300 and 400

elements respectively, 109, 209, 309 and 409 initial nucleotides from these strings have been taken.

Next, a hybridization experiment has been simulated by cutting o� oligonucleotides of length 10 from

the long sequence. The lengths of long strings and short oligonucleotides have been chosen on the

basis of real biochemical experiments [6]. The tests described in [3] have shown that in majority

of real DNA chains of length between 100 and 400 nucleotides there are no natural repetitions of

oligonucleotides of length 10. In such a case it is possible to tune the hybridization experiment in such

a way that the negative experimental faults can be avoided. Because of this the described algorithm is

useful in practice. In cases where such repetitions appear the most general algorithm described in [3]

should be used. One should notice that for strands with positive faults only the specialized algorithm



outperforms the general one. Moreover oligonucleotides of length 10 give high probability that there

is only one solution. This fact has been con�rmed by tests - in all cases one solution, identical with

a source sequence, has been obtained. But our algorithm has been also adapted to any values of n

and l (l � n) and always generates a full list of feasible solutions. In tests a starting l-mer has been

known. A notation "100+20" means that into an ideal spectrum (without any faults) of cardinality

100, 20 randomly generated positive faults have been added. An addition of next 20 l-mers created a

set "100+40" etc. l-mers which have been included had to be di�erent from those already existing in

the spectrum.

Below results of the computational experiment for the described algorithm are presented. Com-

putation times of the algorithm accepting all types of faults (described in [3]), are also shown. They

indicate a speed-up obtained by the algorithm constructed for the case where only positive faults

appear.

Table 1 contains average computation times (10 runs for each entry) depending on a length of a

source sequence and a number of faults. The computation times have been restricted to 500 seconds

and average times shown in Table 1 take into account only those instances which have been solved in

the time limit. Table 2 depicts a number of such instances.

A number of The algorithm for The algorithm for

positive faults positive faults only all types of faults

in A number of l-mers in a source sequence

spectrum 100 200 300 400 100 200 300 400

0 0.02 0.05 0.11 0.20 0.64 30.22 21.05 82.61

20 0.02 0.06 0.13 0.21 1.16 42.13 28.07 96.47

40 0.03 0.07 0.14 0.24 1.97 55.64 35.73 64.61

60 0.03 0.08 0.16 0.26 3.25 9.98 43.40 67.94

80 0.04 0.10 0.18 0.28 4.71 12.36 52.66 86.22

Table 1. Average computation times (in seconds) for, respectively, the algorithm accepting positive

faults only, and the algorithm accepting all types of faults (instances with positive faults only).

A number of The algorithm for The algorithm for

positive faults positive faults only all types of faults

in A number of l-mers in a source sequence

spectrum 100 200 300 400 100 200 300 400

0 10 10 10 10 10 10 9 9

20 10 10 10 10 10 10 9 9

40 10 10 10 10 10 10 9 8

60 10 10 10 10 10 9 9 8

80 10 10 10 10 10 9 9 8

Table 2. A number of instances (from among 10 used in the experiment) solved by the algorithms

within 500 seconds.

Tests of the presented algorithm have given surprisingly good results, even for 80% introduced

faults (as compared with an ideal spectrum), hence we have decided to replace completely randomly

generated errors by more realistic ones. In order to include one false element into a spectrum, one of

the l-mers already existing in it has been duplicated and then its �rst, last or both nucleotides have

been changed. Because for this kind of faults results were almost identical to those obtained earlier

(the di�erence was not greater than 0.01 second), we have decided to prepare more complicated input

data. The worst type of faults for the described algorithm is the one where the last nucleotide of an

l-mer is false. A series of tests with only this type of faults have been carried out. Again results were

very similar to those obtained for the randomly generated faults (Table 1).



Figure 1: Figure 1. An average computation time (in seconds) versus the number of positive faults

in spectrum (for various lengths n of an original sequence) for the algorithm accepting positive faults

only

4 Conclusions

In the paper, the algorithm for solving a computational phase of the DNA sequencing by hybridization

method, has been proposed. The algorithm can handle the case positive faults, appearing in the data

obtained from the hybridization experiment. No a priori knowledge about the source of these faults

is required.

The presented algorithm has been extensively tested on real, thus computationally harder, DNA

sequences. Parameters n (the length of a reconstructed sequence) and l (the length of hybridizing

oligonucleotides) chosen for tests purposes, had the values used in real experiments. The algorithm

has behaved exceptionally well if only positive errors have appeared (and this knowledge could be

used). The algorithm can reconstruct DNA sequences from spectra containing of up to 50% (positive)

faults, in a very short time.

Future examinations should allow for a further evaluation of the scope of applications of the

sequencing approach with positive faults described in this paper.
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