
Breakpoint Phylogenies

Mathieu Blanchette Guillaume Bourque David Sanko�

blanchem@iro.umontreal.ca bourque@crm.umontreal.ca sankoff@ere.umontreal.ca

Centre de recherches math�ematiques, Universit�e de Montr�eal

CP 6128 Succursale Centre-Ville, Montr�eal, Qu�ebec H3C 3J7

Abstract

We describe a number of heuristics for inferring the gene orders of the hypothetical ancestral
genomes in a �xed phylogeny. The optimization criterion is the minimum number of breakpoints
(pairs of genes adjacent in one genome but not the other) in the gene orders of two genomes
connected by an edge of the tree, summed over all edges. The key to the method is an exact solution
for trees with three leaves (the median problem) based on a reduction to the Traveling Salesman
Problem.

1 Introduction

There have been a number of investigations of phylogeny of N > 2 genomes based on the pairwise

comparison of the gene orders of these genomes, followed by distance matrix methods (e.g. [8]). Treeing

methods based on the direct comparison of all N gene orders, which infer gene order at ancestral nodes

[4, 9], have been little used because of the di�culty in generalizing measures of genomic distance to

more than two genomes { there are no algorithms available, aside from rough heuristics, for handling

even three relatively short genomes. Besides this technical problem, there are conceptual problems

inherent in the use of rearrangement-event types of edit-distance, or their N�genome generalizations,

for the purposes of reconstructing evolutionary history.

This include unwarranted assumptions as to the relative importance (i.e. costs) of reversals,

transpositions, translocations and other rearrangement events (cf. [1]) and the fallacy that calculation

of an edit distance allows the recoverability of the \true" history of genomic divergence { in fact, there

is a proliferation of of optimal edit paths (and severe underestimation of the total number of events

generating the divergence, cf. [5]) for moderate or large gene-order distances.

These problems all militate in favour of extending gene-order comparisons to three or more genomes

through a much simpler and model-free metric, namely the number of breakpoints.

Consider two genomes A = a1 : : : an and B = b1 : : : bn on the same set of genes fg1; : : : ; gng. We

say ai and ai+1 are adjacent in A (and an and a1 are adjacent as well in circular genomes). If two

genes g and h are adjacent in A but not in B, they determine a breakpoint in A. We de�ne �(A;B)

to be the number of breakpoints in A. This is clearly equal to the number of breakpoints in B.

The number of breakpoints between two genomes is not only the most general measure of genomic

distance, requiring no assumptions about the mechanisms of genomic evolution (inversion versus trans-

position versus translocation) underlying the data, but it is also the easiest to calculate.

In this paper we o�er a number of solutions to the problem of inferring ancestral gene order by

minimizing the number of breakpoints associated with each edge of a given phylogenetic tree, summed

over the entire tree. These involve the solution of the Traveling Salesman Problems (TSP) at each

internal vertex of the tree, and an iterative approach to optimizing the entire tree. The approaches

di�er only in the initialization of the set of genomes associated to the internal vertices. Simulation

experiments show that better initialization reduces the chances of converging to a non-global solution.

2 Steiner Points under the Breakpoints Metric.

The problem is formulated as follows: Let T=(V,E) be an unrooted binary tree with N � 3 leaves

and � = fg1; � � � ; gng be a set of genes. Suppose fV1; � � � ; VNg � V (T) are the leaves of the tree and

fVN+1; � � � ; V2N�2g are the internal vertices of the tree. The data consist, for each leaf Vi; i = 1; � � � ; N ,

of a circular permutation Gi = gi1 � � � g
i
n of the genes in �, representing a contemporary genome. The

task is to �nd the permutations GN+1; � � � ; G2N�2 associated with the internal (ancestral) vertices

VN+1; � � � ; V2N�2, such that X
ViVj2E(T)

�(Gi; Gj)

is minimized.

3 The Median and the Traveling Salesman Problem.

The smallest problem of this type is that of �nding the median, when N = 3: Given three genomes

A;B and C, containing the genes in �, we want to �nd median(A;B;C), a genome S containing the

genes in � such that

�(S;A) + �(S;B) + �(S;C)

is minimized.

This can be reduced to the TSP as follows [2]. We de�ne � to be the complete graph whose

vertices are the elements of �. For each edge gh in E(�), let u(gh) be the number of times g and h

are adjacent in the three genomes. Set w(gh) = 3� u(gh). Then the solution to TSP on (�; w) traces

out an optimal genome S on �, since if g and h are adjacent in S, but not in A, for example, then

they form a breakpoint in S.

3.1 Genomes with directionality

Our simulations will involve directed genomes; we assume we know the strandedness, or direction of

transcription, of each gene in each genome in the data set. In this case, the notion of breakpoint must

be modi�ed to take into account the polarity of the two genes [2]. If gh represents the order of two

genes in one genome, then if another genome contains gh or �h � g there is no breakpoint involved.

However, between gh and hg there is a breakpoint, similarly between gh and �g�h; g�h;�gh; h� g

or �hg. Adjacency is no longer commutative. The reduction of the median problem to TSP must

be somewhat di�erent to take into account that the median genome contains g or �g but not both.

Let � be a complete graph with vertices V (�) = f�gn; : : : ;�g1; g1; : : : ; gng. For each edge gh in

E(�), let u(gh) be the number of times �g and h are adjacent in the three genomes A;B and C; and

w(gh) = 3 � u(gh), if g 6= �h: If g = �h, we simply set w(gh) = �Z, where Z is large enough to

assure that a minimum weight cycle must contain the edge �gg.

Proposition: If s = s1;�s1; s2;�s2; : : : ; sn;�sn is the solution of the TSP on (�; w), then the median

is given by S = s1s2 : : : sn:

Proof: �(S;A) + �(S;B) + �(S;C) =
P

gh2S;g 6=�hw(gh)

= nZ +
X
gh2s

w(gh):

Thus S minimizes �(S;A) + �(S;B) + �(S;C) i� s is of minimal weight.

4 Median Algorithm Applied Iteratively to Phylogeny Decomposed

into Overlapping Triples.

A general method for the inference of ancestral genomes on a �xed binary tree is the iterative im-

provement method of [7], as adapted for the genomics context in [9, 3]. Each of the N � 2 internal

vertices, together with its three neighbors, de�nes a 3-star. The solution to the Steiner point problem

will have a reconstructed genome associated with each such vertex, which must be a solution to the

median problem determined by these neighbors.

Then the following algorithm, in which we leave unspeci�ed how to set up the initial TSP for each

genome to be reconstructed, converges to a (local) optimum:

algorithm optimize tree

input G1; � � � ; GN

cost 1

extremities f1; � � � ; Ng

internal fN + 1; � � � ; 2N � 2g

do for M = N + 1; � � � ; 2N � 2;

set up TSP for GM

solve TSP for GM

remove the two neighbors of VM preceding it in the vertex numbering from extremities

transfer VM from internal to extremities

enddo

routine iterate median

output GN+1; � � � ; G2N�2

In each of Sections 4.2, 4.3 and 4.4 below, the set up TSP instruction will be replaced by a speci�c

routine. The iterate median routine is independent of the set-up strategy in the initialization; in

fact all three approaches to be used are identical for 3-leaf trees (i.e. the median problem).

routine iterate median

while C =
P

ViVj2E(T)�(G
i; Gj) < cost,

cost C

do for M = N + 1; � � � ; 2N � 2;

G� median(Gh; Gj ; Gk), where Vh; Vj and Vk are the three neighbors of VM
if �(G�; Gx) � �(GM ; Gx), for x = h; j and k, where \<" holds for at least one x,

GM G�

endif

enddo

endwhile

4.1 Initialization strategies.

The output of this algorithm is not necessarily a global optimum. The main factor in directing

convergence towards a global optimum, and the focus of this paper, is the how the initialization is

carried out.

A promising initialization, which makes use of the most pertinent input data for each internal

node, bases the initial TSP on the three nearest data genomes. In Section 4.2 we will use this idea

as the basis of one of our heuristics, three nearest. In addition, in Section 4.3, we de�ne an initial

TSP at each internal node, where the edge-weights are the average of the corresponding edge-weights

at the three neighbouring nodes, found by solving a system of linear equations. Finally, in Section

4.4, we introduce an initialization method which involves setting up and solving an initial TSP at

each internal node, where the edge-weights are calculated by dynamic programming, minimizing the

number of times a given adjacency has to be created or disrupted within the tree to be present or

absent, respectively, at that node.

It can be seen in optimize tree that rather than initializing all internal nodes at once, they are

initialized more \cautiously", i.e. one at a time, starting with an internal node with two terminal

node neighbours. Once it is initialized, it is treated as a terminal node (i.e. in extremities), and the

two neighbours are disregarded, as the initialization proceeds with another internal vertex.

Without loss of generality, we may assume that the internal vertices are numbered in such a way

that of the three neighbors of each vertex, two either precede it in the list or are leaves. This assures

that if genomes for the internal vertices are inferred one by one according to this numbering, the set

of untreated vertices, as it shrinks, at all times forms a connected tree.

4.2 Triangulation.

Then we can replace the set up TSP instruction in optimize tree by the following:

routine three nearest

let Vh; Vj; Vk be the three vertices in extremities closest to VM
on three disjoint paths leading from VM

de�ne TSP for GM , based on Vh; Vj; Vk.

4.3 Trees of TSPs.

Instead of setting up the TSP at each internal vertex as a function of the three closest previously

solved genomes, we can de�ne a TSP on the basis of the three immediately neighboring TSPs. For

each vertex VM 2 extremities, we set

wM (gh) =

(
1 if gh is not in GM

0 if gh is in GM

We then determine the weights for the vertices in internal as follows:

wM (gh) =
1

3
(wh(gh) + wj(gh) + wk(gh));

for each gh 2 �, where Vh; Vj and Vk are the three neighbors of VM . The weight system w can

then all be easily found by solving the system of simultaneous equations derived from all the vertices

2 internal.

We can replace the set up TSP instruction in optimize tree by the following:

routine average TSP

calculate w for the vertices in internal based on the vertices in extremities

4.4 Minimizing Adjacency Disruptions.

Our third heuristic focuses �rst on each pair of genes in � and tries to minimize the number of

times this pair is inferred to have been directly a�ected by rearrangement of the genome. Dynamic

programming is used to calculate the weights for the TSP.

For any internal vertex VM , suppose we have already calculated a genome for vertices VN+1; � � � ; VM�1

and we wish to do so for VM . We impose a direction on all edges of the tree, namely the direction lead-

ing to VM . Then VM has three edges leading to it, all other internal vertices have two, and leaves have

none. The dynamic programming routine included in the set-up routine below follows this direction

towards VM .

routine adjacency parsimony

direct all edges in E(T) towards M

do for i 2 extremities and all gh 2 �

w+
i (gh) 0 if ij 2 Gi; w+

i (gh) = 1 if ij 62 Gi:

w�i (gh) 1 if ij 2 Gi; w�i (gh) = 0 if ij 62 Gi:

enddo

remain internal

while remain 6= �

�nd i �M; i 2 remain; such that for all vertices j leading to i; j 62 remain

do for all gh 2 �

w+
i (gh) �Vj leads to Vi

min(w+
j (gh); 1 + w�j (gh))

w�i (gh) �Vj leads to Vi
min(w�j (gh); 1 + w+

j (gh))

enddo

remove i from remain

endwhile

do for all gh 2 �

wM (gh) w+
M (gh)� w�M (gh)

enddo

5 The Simulations

To assess and compare the three approaches to initializing the iteration of the median algorithm, a

series of simulations were carried out. The parameters were N , the number of terminal vertices in

the tree, n, the number of genes in each genomes, and r, the total number of breakpoints between all

pairs of adjacent genomes in the tree. Here, we illustrate with the results for N = 7 and n = 20. The

total number of rearrangements r was varied from 20 to 300 in steps of 10.

For each target value of r, ten sets of simulated genomes were required. Starting with genome

(1 2 � � � n) at one vertex, we generated genomes for neighbouring vertices with an appropriate random

number of rearrangements until all internal and terminal vertices were assigned a genome. Each

rearrangement was randomly chosen to be a transposition or an inversion (cf [1]), of random length.

Once all genomes were generated, the breakpoints on each edge were counted, and the simulated

example was retained only if r was the target values, until the quota of 10 examples was �lled.

For each example, the genomes from the terminal vertices only served as input for each of our

three algorithms separately. For solving our TSP problems we used C.Hurwitz' tsp solve software

on an Origin 200 computer with a RISC 10000 processor.

6 Results

It can be seen from Figure 1, that at when the average number of breakpoints per edge approaches
1
2n, the algorithm tends to reconstruct evolutionary histories more parsimonious than those actually

responsible for the data. After 2
3n, the number of reconstructed breakpoints actually levels o� sharply.

Note that in this and subsequent �gures, all curves are smoothed by the SPLUS lowess function.

r: Breakpoints generated (input)

R
: B

re
ak

po
in

ts
 r

ec
on

st
ru

ct
ed

50 100 150 200 250 300

50
10

0
15

0

R = r
10-gene genomes
20-gene genomes
30-gene genomes

Figure 1. Number of reconstructed breakpoints R (best of three heuristics) as a function

of number of breakpoints generated in the input data, for 10-gene, 20-gene and 30-gene

genomes. Number of leaves N = 7; number of branches 2N � 3 = 11.

The accuracy of our initializations can be assessed in Figure 2, which gives the improvement to the

objective R obtained by the iteration step as a function of r for the three heuristics. This improvement

is generally less than 1
2%, reaching more than 1% for the average TSP initialization only for values

of r where, as we shall see, this routine performs relatively poorly.

r: Breakpoints generated (input)

R
 (

be
fo

re
 it

er
at

e_
m

ed
ia

n)
 -

 R
 (

af
te

r
ite

ra
te

_m
ed

ia
n)

50 100 150 200

0.
0

0.
5

1.
0

average_TSP
adjacency_parsimony
three_nearest

Figure 2. Decrease in number of reconstructed breakpoints R, for each heuristic, following iteration

step, as a function of number of breakpoints generated in the input data. n = 20; N = 7.

Figure 3 compares the performance of the two heuristics average TSP and adjacency parsimony

(both outperform three nearest) over a range of evolutionary divergence. It is striking that for small

r, adjacency parsimony performs distinctly better, even after both initializations bene�t from the

iterative improvements, while for large r it is the average TSP which is clearly superior.

r: Breakpoints generated (input)

R
 (

ad
ja

ce
nc

y_
pa

rs
im

on
y)

 -
 R

 (
av

er
ag

e_
T

S
P

)

50 100 150 200

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

before iterate_median
after iterate_median

Figure 3. Di�erence between results of adjacency parsimony and average TSP

as a function of r, before and after iterative improvements. n = 20; N = 7.

To address the question of global optimality, we count how many heuristics give the minimum

solution for R. In Figure 4, we see that (except for genomes that have diverged very little) around 1.6

heuristics, on the average, seem to obtain the minimum. Assuming a doubly-attained minimum is a

global solution (not always true, of course),and since adjacency parsimony and average TSP are

the ones that tend to achieve the lowest values, we can conjecture that individually they attain global

optimality about half of the time, for this range of parameter values.

Breakpoints generated (input)

A
ve

ra
ge

 n
um

be
r

of
 o

pt
im

al
 s

ol
ut

io
ns

 a
m

on
g

th
e

th
re

e
he

ur
is

tic
s

50 100 150 200 250 300

1.
5

2.
0

2.
5

3.
0

10-gene genomes
20-gene genomes
30-gene genomes

Figure 4. Number of heuristics (out of three) attaining optimal solution as a function of number

of breakpoints generated in the input data, for 10-gene, 20-gene and 30-gene genomes. N = 7.

7 Summary and Conclusions.

We have proposed and tested three initializations for solving the breakpoint phylogeny problem by

iterative improvement. We showed that the initializations were very precise, within one percent or so

of the best solution. The obverse of this is that the iterative step leads to a small, but non-negligible,

improvement.

We were able to identify one initialization which worked better for low-divergence data and one

which is superior for high-divergence data. Studying the rate of coincidental solutions among the three

heuristics enabled us to assess how frequently the methods are likely to achieve global optima.

We have found at what point parsimony leads to underestimation of the number of events gener-

ating the data. In another paper [6], we analyze the multiplicity of equivalent local minima and the

breakpoint distances amongst them, as an assessment of the reliability of reconstructed gene orders.

An important assumption in this work has been the �xed set of genes present in the data genomes.

This is unrealistic in many contexts, but relaxing it makes the median problem, and hence, phylogenetic

reconstruction, much more di�cult [2]. Further work involves non-binary trees, as reported in [6].

Acknowledgments

Research supported by grants to DS from the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the Canadian Genome Analysis and Technology program, and a NSERC

fellowship for graduate studies to MB. DS is a Fellow of the Canadian Institute for Advanced Research.

References

[1] Blanchette, M., Kunisawa, T. and Sanko�, D., \Parametric genome rearrangement," Gene-

Combis (on-line) and Gene, 172:GC 11-17, 1996.

[2] Blanchette, M. and Sanko�, D., \The median problem for breakpoints in comparative genomics,"

Computing and Combinatorics, Proceedings of COCOON `97. (T. Jiang and D. T. Lee, ed.)

Lecture Notes in Computer Science 1276, Springer Verlag, 251-263, 1997.

[3] Ferretti, V., Nadeau, J. H. and Sanko�, D., \Original synteny," Combinatorial Pattern Matching.

Seventh Annual Symposium. (D. Hirschberg and G. Myers, ed.) Lecture Notes in Computer

Science 1075, Springer Verlag, 159-167, 1996.

[4] Hannenhalli, S., Chappey, C., Koonin, E. V. and Pevzner, P. A., \Genome sequence comparison

and scenarios for gene rearrangements: a test case," Genomics, 30:299-311, 1995.

[5] Kececioglu, J. and Sanko�, D., \Exact and approximation algorithms for sorting by reversals,

with application to genome rearrangement`," Algorithmica, 13:180-210, 1995.

[6] Sanko�, D. and Blanchette, M., \Multiple genome rearrangement," Manuscript, Centre de

recherches math�ematiques, 1997.

[7] Sanko�, D., Cedergren, R. J. and Lapalme, G., \Frequency of insertion-deletion, transversion,

and transition in the evolution of 5S ribosomal RNA," J. Mol. Evol., 7:133{149, 1976.

[8] Sanko�, D., Leduc, G., Antoine, N., Paquin, B., Lang, B. F. and Cedergren, R. J., \Gene order

comparisons for phylogenetic inference: Evolution of the mitochondrial genome," Proceedings of

the National Academy of Sciences USA, 89:6575-6579, 1992.

[9] Sanko�, D., Sundaram, G. and Kececioglu, J., \Steiner points in the space of genome rearrange-

ments," International Journal of the Foundations of Computer Science, 7:1-9,1996.

