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Abstract

Recently a new method for obtaining restriction maps was developed by David Schwartz at NYU.

Using this method restriction maps are created from uorescent images of individual molecules

obtained using a microscope. For every individual observed molecule, image processing methods are

used to generate a list of the approximate locations of the sites where the molecule is cut by the

restriction enzyme. Our task is to �nd the location of all restriction sites given the observed cutting

sites. This is also complicated by the fact that an orientation of the molecules is unknown, i.e. for

a cut-site x we do not know whether x or 1 � x corresponds to a restriction site in a unit length

molecule.

First we consider the case that the orientation of all molecules and the number c of restriction

sites are known. We suppose that for each restriction site location yj the corresponding measured

cut-sites follow the normal distribution with the density function g(x; �j ; �j) for some �j. (This

means the measurement is unbiased with mean �j.) The observed cut-sites locations x
1
; : : : ; xn

then follow the mixture distribution f(x;p; �; �) =
Pk

j=1 pjg(x; �j ; �j), where
P

pj = 1. Using the

likelihood principle we wish to �nd parameters p; �; � that achieve the maximum of the likelihood

function
Qn

i=1 f(xi;p; �; �). In our case it is natural to assume that p
1
= � � � = pk = 1=k and

�
1
= � � � = �k = � for a constant �.
Frequently in the Optical Mapping there appear \false" cuts, i.e. cuts corresponding to no re-

striction site. In our model we accommodate false cuts by using an uniform component in the

mixture distribution. We use EM algorithm and Bayes theorem for computing the maximum like-

lihood estimate and compare our results for the di�erent variants of our model.

We explore how the change of the orientation of some molecules inuences the maximum likeli-

hood estimate and show that the orientation question can be in our case answered for each molecule

separately. Finally we present few ideas for specifying the orientation of molecules without investi-

gating the positions of restriction sites.

1 Introduction

There is a group of enzymes known as restriction endonucleases (or restriction enzymes) that are

able to cleave (cut) DNA molecules. The restriction sites { the positions where DNA molecule is

cleaved is usually speci�ed by a short sequence of nucleotides. For given restriction enzyme(s) a DNA

molecule exhibits a typical pattern of restriction sites called restriction map. Restriction maps are

frequently used in molecular biology from genetic engineering to genome mapping. The standard

way for constructing maps is by sizing the restriction fragments using gel electrophoresis. Optical

Mapping (OM) is a new single-molecule approach to constructing restriction maps developed by D.

Schwartz at the W.M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New

York University[2, 7, 8, 11]. It has already been used in constructing restriction maps for medium-sized

molecules e�ectively and has a potential for highly e�ective automated creation of restriction maps.



Here is an overview of the Optical Mapping technique. Fluorescently stained DNA molecules

are elongated and attached to a glass surface so that biochemical activity is preserved. This can be

achieved in a couple of ways, the most recent technique uses the uid ows within drying droplets. The

molecules are then exposed to a restriction enzyme and after digestion microscope images of cleaved

molecules are taken. Restriction sites appear as gaps in the image of a molecule and fragment lengths

can be computed based on uorescent intensity of the fragments.

In the idealized experiment we would expect restriction maps of individual molecules to be almost

identical, however due to various experimental imprecision there are errors in the detection of restric-

tion sites. False negative errors, when molecules are not cleaved at all restriction sites, are mostly

due to the the fact that restriction enzymes cannot cleave the DNA molecule at the places where

molecule is attached to the glass surface. False negative errors can be easily eliminated by increasing

the number of scanned images. It is more di�cult to eliminate the false positive errors { when there

is a cleavage detected not at the restriction site. It is suspected that false positive errors are mostly

due to imperfection of machine vision, namely 1) misidenti�cation of spurious data, 2) identi�cation

of multiple molecules as one, 3) identi�cation of partial molecules as complete, 4) errors in the size

estimation, 5) missing fragments.

Given the restriction maps of the individual molecules, the major computational challenge is to

derive consensus locations of restriction sites. Another issue involved with the current system is that

it may not produce the exact orientation information on individual molecules, i.e. the real ordering of

the sites may be the reverse of what we observe. The orientation problem can be relaxed by attaching

a marker to one end of the DNA molecule. This can make it easier to �nd a multiple alignment of

restriction maps, but it still remains a chalenging algorithmic and statistical problem.

A model similar to our has been presented in [1] and its implementation is used in the Schwartz's

laboratories at NYU. Our aim has been to explore certain simpli�cations of that model in hopes of

having faster algorithms that remain reliable. For example, we only include false cuts bat not \bad"

molecules as does [1]. Also we employ certain heuristics.

2 Known Orientation

Let � = �1; : : : ; �k, �l 2 (0; 1) be the restriction sites of the unit length DNA molecule. We assume

that the number k of restriction sites is known. We have got images of M di�erent copies of the

DNA molecule, for i-th copy of the molecule we have observed mi positions where the molecule is

cleaved. We will call these positions cut sites and denote them Xi = fxi;1; � � � ; xi;mi
g, xi;j 2 (0; 1) for

i = 1; : : : ;M and j = 1; : : : ; mi. With each xi;j we can associate an unobservable zero-one indicator

variable zi;j;l, where value of zi;j;l is one or zero depending on whether cut site xi;j comes as observation

of the restriction site �l or does not. The knowledge of zi;j;l would allow us to estimate �l with

�̂l =

MP
i=1

miP
j=1

zi;j;lxi;j

MP
i=1

miP
j=1

zi;j;l

: (1)

We will simplify our statistical model by considering each cut site to be an independent observation.

This is true for cut sites from di�erent molecules and we believe that dependences among cut-sites

within a molecule are weak enough to justify our simpli�cation. More complex models have been

studied [1] and it seems that this simpli�cation does lead to comparable results.

Let X = x1; : : : ; xn = x1;1; : : : ; xM;mM
be the collection of all cut sites and let zi;l be the cor-

responding unobservable variables. Let Yl = fxi : zi;l = 1g be the collection of cut sites that arise

from a restriction site �l. We assume that each cut site from Yl is distributed according to a nor-

mal distribution with mean �l and some variance �2l . Unfortunately we also observe \false cut sites"



Y0 = fxi : zi;l = 0; 1 � l � kg. We can extend the de�nition of zi;l for l = 0, we put zi;0 = 1 when

xi 2 Y0. We assume that cut sites from Y0 are distributed according to a uniform distribution on

interval (0; 1). Therefore cut sites from X are distributed according to a mixture of uniform U(0; 1)

and k normal N(�1; �
2
1); : : : ; N(�k; �

2
k) distributions. The probability density function for this mixture

is

f(x; p0; : : : ; pk; �1; : : : ; �k; �
2
1 ; : : : ; �

2
k) = p0 +

kX
l=1

plg(x; �l; �
2
l ) ;

where g(x; �; �2) = 1p
2��2

exp�
(x��)2
2�2

is the normal probability density function.

We will make one more simplifying assumption, we will consider only the case when mixing pro-

portions of the normals are the same and variances are the same too. So we have p1 = � � � = pk =

(1� p0)=k , �
2
1; : : : ; �

2
k = �2 and the probability density function simpli�es to

f(x; p; �1; : : : ; �k; �
2) = p+

1� p

k

kX
l=1

g(x; �l; �
2) :

Given data X = x1; : : : ; xn, the best estimate of the positions of restriction sites is � = �1; : : : ; �k
that maximizes the likelihood function

L(X ; p; �; �2) =
nY
i=1

f(xi; p; �; �
2) :

This is the same as maximizing the log-likelihood function

l(X; p; �; �2) = logL(X; p; �; �2) =
nX
i=1

log f(xi; p; �; �
2) : (2)

We use the EM (expectation-maximization) algorithm to �nd the maximum likelihood estimate

(MLE). The EM algorithm is an iterative algorithm, in each iteration we compute a new estimate of

parameters based on the estimate of parameters from the previous iteration (the question of starting

values will be discussed later). It can been shown that iterative estimates of parameters obtained by

the EM algorithm converge to the MLE [5, 9].

Every iteration of the EM algorithm consists of an E-step and an M-step. In the E-step we compute

the estimate of unobservable data zi;l from the values of parameters p; �1; : : : ; �l; �
2 using the following

expressions.

ẑi;0 =
p

f(xi; p; �; �2)

ẑi;l =
1� p

k
�
g(xi; �l; �

2)

f(xi; p; �; �2)
; 1 � l � k :

Note that while the indicator variables zi;l can have only zero-one values, the estimate ẑi;l is the

conditional probability that observation xi belong to the l-th component and can have any value from

[0; 1].

In the M-step the new estimates of the parameters are computed from ẑi;l. The estimate for �l is

similar to (1), we have

�̂l =

nP
i=1

ẑi;lxi

nP
i=1

ẑi;j;l

:

The estimate for p is

p̂ =
1

n

nX
i=1

ẑi;0



and for �2 we have

�̂2 =

kP
l=1

nP
i=1

ẑi;l(xi � �̂l)
2

kP
l=1

nP
i=1

ẑi;l

:

Equations for p̂; �̂; �̂2 can be justi�ed in the sense that if p; �; �2 are convergence points such

that p̂; �̂; �̂2 = p; �; �2, then @l=@� = 0, for � = p; �1; : : : ; �k; �
2 and the convergence point is a local

maximum (we can use augmentation technique to avoid being stuck in a stationary point thats not a

maximum).

3 Unknown Orientation

In the case of unknown orientation we can introduce a new set of unobserved (rather that unobservable)

variables fi, i = 1; : : : ;M . We set fi = 1 when orientation of Xi corresponds to the orientation of Y

and fi = �1 when orientation of X�1i = f1� xi;mi
; � � � ; 1� xi;1g corresponds to orientation of Y .

There are 2M possible choices for orientation of molecules, however we can incorporate orientation

variables into the likelihood model in such a way that the orientation question for each molecule can

be decided independently.

Let l(Xfi
i ; p; �; �2) be the contribution of molecule Xi to the log-likelihood function,

l(X
fi
i ; p; �; �

2) =

8>><
>>:

miP
j=1

log f(xi;j ; p; �; �
2) if fi = 1,

miP
j=1

log f(1� xi;j ; p; �; �
2) if fi = �1.

For given f = f1; : : : ; fM the log-likelihood function (2) has form

l(X; f ; p; �; �2) =
MX
i=1

l(X
fi
i ; p; �; �

2)

and the MLE in this setting is the set parameters p; �; �2 that maximizes

l(X; p; �; �2) = maxfl(X; f ; p; �; �2) : f 2 f�1; 1gMg

=
MX
i=1

maxfl(Xi; p; �; �
2); l(X�1i ; p; �; �2)g :

We will extend E-step of EM-algorithm to estimate the orientation of molecules. Given p; �; �2

we set f̂i = 1 if l(Xi; p; �; �
2) � l(X�1i ; p; �; �2) and f̂1 = �1 otherwise. Clearly f̂ = f̂1; : : : ; f̂M is the

orientation of molecules that for given p; �; �2 maximizes l(X; f ; p; �; �2). We then compute ẑ; p̂; �̂; �̂2

assuming the orientation of molecules is given by f̂ .

Another approach we have tried was to incorporate unobservable fi in the same manner as zi;l and

to compute conditional probabilities f̂i of the orientations in the E-step. This required to evaluate two

sets of zi;l, for each of two possible orientations. In the M-step the new parameter estimates are then

computed based on the values of conditional probabilities fi and zi;l. Unfortunately this approach did

not lead to satisfactory results.

4 Initial Values of Parameters and Independent Flipping

The major drawback of the EM-algorithms is the dependence of the outcome on the initial values of

parameters. This is the consequence of the multimodality of the likelihood function. We are searching



for the global maximum, but the EM-algorithm is only able to �nd a local maxima. A straitforward

but time consuming approach is described in [1], to generate many starting points and to use the

maximizing procedure on the most promising starting points.

We describe a heuristic approach, which allows us to �nd an orientation of molecules without the

knoledge of the estimates p̂; �̂; �̂2 and even without the knoledge of the number of restriction sites

k. Our heuristic is based on the \voting (majority)" principle { the decision whether two molecules

have the same orientation or do not is based on how these two molecules compare to all remaining

molecules.

First, every two molecules Xi;Xj are assigned orientation score osi;j expressing how likely the

molecules are to have the same orientation. To get the orientation score we investigate how well Xi

aligns with Xj and X�1j . The problem of aligning restriction maps is discussed in [6]. Here We use

very simple scoring scheme. For two aligned cut sites xi 2 Xi and xj 2 Xj the score is 1� jxi� xjj=w

(w is a �xed parameter, only cut sites within distance w are considered aligned). The score of the

alignment is the sum of scores of aligned pairs. The alignment score as(Xi;Xj) is the score of the

highest scoring alignment.

We de�ne orientation score by

osi;j = os(Xi;Xj) =
as(Xi;Xj)

as(Xi;Xj) + as(Xi;X
�1
j )

;

where we set osi;j = 1=2 when as(Xi;Xj) + as(Xi;X
�1
j ) = 0. The orientation score osi;j can be seen

as an estimate of 1(fi = fj) (for Boolean expression E the indicator value 1(E) is 1 when E is true

and 0 otherwise). Our aim is to �nd the orientation f of molecules such that j1(fi = fj) � osi;j j is

minimal1.

Consider two molecules Xi and Xj, the cut sites of Xi can correspond to di�erent restriction sites

then do the cut sites of Xj thus making score osi;j small even if fi = fj (or having osi;j large when

fi 6= fj). We can avoid this by looking at two corresponding rows of orientation scores os(i) = osi;l
and os(j) = osj;l, 1 � l �M . If Xi and Xj have the same orientation, we should see some agreement

between rows os(i) and os(j), and on the contrary, if Xi and Xj have the di�erent orientation, we

should see some disagreement between rows os(i) and os(j). In general, we consider two values from

(0,1) to agree when they are either both larger than 0.5 or both smaller that 0.5. The new estimate

cosi;j thus is

cosi;j = 1

M

MX
l=1

1((osi;l > 0:5 ^ osj;l > 0:5) _ (osi;l < 0:5 ^ osj;l < 0:5)) :

We can iterate this process and get more and more accurate estimates. We continue till convergence

to a (zero-one) matrix F is achieved. Vector f such that F = f1(fi = fj)g speci�es the orientation of

molecules. The outcome of this heuristic is dependent on parameter w, when w is selected very small

then most orientation scores are 1=2, the resulting matrix consists of all 1's. We will not consider

such values of parameter w. For some data sets, especially when resulting restriction map is quite

symmetric, we do not get 0-1 matrix as the output of the heuristic. Than we have more then one

answer to the orientation problem. Also in such case we can try to �nd w that yields 0-1 matrix. We

have observed, that the most appropriate parameter is the smallest w that yields to 0-1 matrix.

Even if the orientation of molecules is known (speci�ed), the EM-algorithm remains sensitive to

the initial values of the parameters, however to a much less extent. Again we can generate many

sets of starting values and continue from the most promising points. However, having speci�ed the

orientation and knowing the number of restriction sites we can use following simple heuristic. We

order the observed cut sites and divide them according to their order into k bins, each containing n=k

1This problem can be shown to be NP-hard by reduction from the EBFC problem ([3, 10])



data heuristics MLE

Figure 1: � DNA, Ava I Enzyme.

cut-sites. If we assume that the digestion rate for every restriction site is the same, we can assume that

the cut sites in the l-th bin are mostly cut sites corresponding to the l-th restriction site. Therefore a

good starting value for �l might be the average value of cut sites in the l-th bin. And the initial value

for �2 would be the average variance.

There are two factors that make the described heuristic for starting point imprecise. We do not have

an appropriate starting value for p and the false cut sites arti�cially increase the variance. Therefore

we include one extra bin (say bin 0), in which we will capture cut sites that appear to be false cuts.

To specify the potential false cut sites we use the near neighbor technique [12]. For each point xi
we determine the distance dm(xi) between xi and its m-th nearest neighbor, i.e. dm(xi) is such that

jfx 2 X : jxi � xj < dm(xi)gj < m and jfx 2 X : jxi � xj � dm(xi)gj > m. Naturally the cut sites

in the dense populated areas have small m-th nearest neighbor distance and vice versa. Therefore we

can expect cut sites with large dm(xi) to be false cuts. Given threshold t we put all cut sites xi with

dm(xi) > t into bin 0, order the remaining cut sites and distribute them into bins 1; : : : ; k. The initial

value for p then is the size of bin 0 divided by n, the initial value for �l is the average value of cut

sites in the l-th bin and the initial value for �2 is the average variance.

5 Experimental Results

We have implemented the EM algorithm for maximum likelihood estimate and the heuristics for

orientations and starting point. The algorithms will be accessible through the USC Computational

Biology server \http://www-hto.usc.edu/software/". The performance of the algorithms is shown

in Fig. 1 { 3. Data we used were provided by D. Schwartz, Laboratory for Biomolecular Imaging,

Department of Chemistry, NYU.

The �rst columns show data as we obtained it. The second columns show the outcome of the

orientation heuristic. The third columns show the outcome of the EM-algorithm. The vertical bars

are actual real restriction sites obtained from the sequence of the DNA. Also there is shown the density
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Figure 2: � DNA, EcoR I Enzyme.

function corresponding to the maximum likelihood estimate of the parameters.

6 Conclusion

We have described a simple maximum likelihood approach for solving the multiple restriction map

alignment problem from Optical Mapping. The major drawback of the maximum likelihood methods

is the dependence of the outcome on the starting point, caused by the multimodality of the likelihood

surface. To overcome this obstacle we have designed heuristic algorithms to �nd plausible orientations

of the molecules and to suggest appropriate initial values for the parameters. Unfortunately, these

techniques are not able to specify the number of restriction sites and we plan to use more sophisticated

approaches for this problem [4].
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