A PAC-Learning Algorithm for Conformation Rules and its Experiments

Osamu Maruyama¹ Erika Tateishi¹ Emiko Furuichi² maruyama@ims.u-tokyo.ac.jp erika@ims.u-tokyo.ac.jp emiko@grt.kyushu-u.ac.jp Satoru Kuhara³ Satoru Miyano¹ kuhara@grt.kyushu-u.ac.jp miyano@ims.u-tokyo.ac.jp

- ¹ Human Genome Center, Institute of Medical Science, University of Tokyo 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan
- ² Fukuoka Women's Junior College, Gojo, Dazaifu, Fukuoka 818-01, Japan
- ³ Graduate School of Genetic Resources Technology, Kyushu University Hakozaki, Higashi-ku, Fukuoka 812, Japan

1 Introduction

Computational methods for protein conformation have been extensively developed for searching minimal free-energy conformations. A recursive method is developed to identify a large number of low energy conformations and genetic algorithms are also applied to this problem. Another interesting heuristic method is the hydrophobic zipper method in [1, 2]. Based on the fact many hydrophobic contacts are topologically local, the hydrophobic zipper method randomly selects hydrophobic contacts among neighbors in a sequence and zips up other hydrophobic contacts.

Inspired by this hydrophobic zipper method, but apart from the free-energy minimization problem, we define a conformation rule as a rewriting rule of hypergraphs. Then we develop a PAC-learning algorithm for conformation rules and present some experimental results on amino acid sequences of proteins.

2 PAC-Learning of Conformation Rules

A protein P with a tertiary structure $(p_1, A_1), \dots, (p_n, A_n)$, where $p_i = (x_i, y_i, z_i)$ is the position of the amino acid residue A_i for $1 \le i \le n$, is loosely represented by a node-labeled hypergraph $G = (V, F, \varphi)$ in the following way: The node set is $V = \{1, \dots, n\}$, where the number icorresponds to the position of the *i*th amino acid residue. The nodes are labeled with an alphabet Δ of "colors" by a mapping φ . It is often used to classify the amino acid residues into several categories (e.g., hydrophobicity). φ and Δ represent such a classification of amino acid residues. A hyperedge e in F describes that the nodes in e are within some distance. We assume that $\{i, i+1\}$ is in F for $1 \le i \le n-1$. Thus there are many variations for representing the structure of a protein by a hypergraph.

A bundle rule is a pair $\rho = (B, U)$ of a hypergraph $B = (V, F, \psi)$ and a subset U of V such that $|U| \ge 2$, $U \notin F$ and $e \cap U \neq \emptyset$ for any hyperedge e in F. This bundle rule creates a new hyperedge U if the neighborhood of U is in the form of B.

A conformation unit is a finite set $\gamma = \{(B_1, U_1), \dots, (B_t, U_t)\}$ of bundle rules and a conformation rule is defined as a sequence $\sigma = (\gamma_1, \dots, \gamma_m)$ of conformation units. A conformation rule is applied to a sequence from local toward global as shown in Fig. 1, and finally produces a hypergraph.

We have shown that some class of conformation rules is polynomial-time PAClearnable in the sense of [3] and have developed a PAC-learning algorithm which produces a conformation rule from a collection of sequences.

```
Input: a conformation rule (\gamma_1, \ldots, \gamma_m) and s = x_1 \cdots x_n in \Delta^+
Outputa hyper graph H_s = (V_s, F_s, \psi_s)
procedure Conform((\gamma_1, \ldots, \gamma_m), s)
 \mathbf{begin}
      \begin{array}{l} \underset{i}{\overset{\text{gen}}{\underset{s}}} \\ \forall _{s}:=\{1,\ldots,n\}; \\ \text{let } \psi_{s} \text{ be a mapping defined by } \psi_{s}(i)=x_{i} \text{ for } 1\leq i\leq n; \\ F:=\{\underbrace{\{i,i+1\}}_{i}\mid 1\leq i\leq n-1\}; \end{array} 
      \tau := \min\{n, m\};
for \ell \leftarrow 1 to \tau do
      begin
           w := \ell + 2; /* w is the window size */
           TEMP := \emptyset:
           for each i: 1 \leq i \leq n - w + 1 do
           begin
                    := i + w - 1;
                 for each e: e \subseteq \{i, \ldots, j\} with |e| \leq k do
                begin
                      \widetilde{\tilde{F}} := \bigcup_{l \in e} N_H(l), \text{ where } H = (V_s, F, \psi_s);
                      \tilde{V} := \{ u \mid u \in e' \text{ for some } e' \in \tilde{F} \};
                      \tilde{\psi} := \psi_s |_{\tilde{V}}; /* the restriction of \psi_s to \tilde{V} */
                      \begin{split} & \text{if } \tilde{B} = (\tilde{H}, e) \thickapprox B \text{ for some } B \text{ in } \gamma_{\ell}, \text{ where } \tilde{H} = (\tilde{V}, \tilde{F}, \tilde{\psi}); \\ & \text{ then add a hyperedge } e \text{ to } TEMP; \end{split} 
                end:
           end;
           F := F \cup TEMP;
     end;
F_s := F
end
```

Fig. 1: Conformation algorithm

3 Method of Experiments

We have implemented the PAC-learning algorithm with Common Lisp and chosen 153 proteins from PDB for our experiments. Each protein file is expressed as a distance matrix \mathcal{M} of positions of amino acid residues, where the (i, j)-entry of \mathcal{M} is 1 if the distance between the *i*th and *j*th amino acid residues is at most 6Å and 0 otherwise.

The size of a hyperedge is restricted to be two, three and four because of the difficulty arising from time and space complexity. The alphabet Δ is set to be the collection of the three symbols, H (hydrophobic), P (hydrophilic) and N (neutral).

The first step is to learn a conformation rule from $5 \sim 20$ proteins. The second step is to apply the conformation rule to a sequence for prediction. The comparison between the prediction and the original structure shows that, for some part of a sequence, the corresponding structure is correctly predicted.

References

- Dill, K.A., Fiebig, K.M. and Chan, H.S., Cooperatively protein-folding kinetics, Proc. National Academy of Science, U.S.A. 90, 1942–1946, 1993.
- [2] Hart, W.E. and Istrail, S.C., Fast protein folding in the hydrophobic-hydrophilic model within three-eights of optimal, J. Computational Biology 3, No. 1, 53-96, 1996.
- [3] Natarajan, B.K., Machine Learning: A Theoretical Approach, Morgan Kaufmann, 1991.