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Abstract

We present a new tool, FOREST, aiming at representing the content of a large nucleic

acid sequence (e.g. >100KB ) in a suitable form for the biologist. More precisely, FOR-

EST builds all subsequences repeated in a sequence or a set of sequences. It allows not

only to look for the location of the various occurrences of a given subsequence but points

also to interesting subsequences with respect to a given criterion. This tool is based on

two key ideas. The �rst idea consists to build a su�x-tree representation of a sequence

and to associate to each node of this tree a set of synthesized attributes, computed on the

set of subsequences under this node. This allows the biologist to "browse" in the sequence

with a constant abstract view of what he may expect to �nd in the section of the tree he

is currently investigating. The second idea consists to summarize the distribution of the

information with boolean vectors associated to the sequence. These vectors may be easily

displayed in form of a linear map of events, as it is done in genetic mapping. Both rep-

resentations allow various e�cient operations on the sequence. They provide a powerful

�ltering capacity of the data, while reducing the set of elementary �ltering operations to a

minimum of conceptual operations. This allows the biologist to easily investigate the most

prominent features of the lexical structure of its sequences.

1 Introduction: the need for a lexical analyzer

It is well known, at least for the public of this conference, that the amount of available in-

formation on the macromolecules is growing at a fast rate. The last release of EMBL (RL44)

provides more than 500Kb nucleic sequences, with a total of more than 360 megabases residues

sequenced.

However, these numbers do not re
ect the new challenge emerging since a couple of years,

due to the production of very large sequences of contigs. A web server 1 gives access to public
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sequences of length greater than 100k bases. At present, it contains a list of 75 sequences.

In the near future, complete chromosomes or complete genomes of simple organisms, as it is

already the case for Haemophilus in
uenzae and Saccharomyces cerevisiae, are expected. It

means that strings of several megabases have to be evaluated.

A lot of useful tools have been developed for the analysis of sequences. Very few of them are

able to consider a whole genome and, when it is the case, are computing only an approximated

view of the corresponding sequences. We address in this paper the issue of providing an exact

\�rst level" analysis of these very large sequences.

The analysis of large biological sequences requires to manage a di�cult tradeo� between

the quantitative and qualitative aspects of the corresponding information. On one side, one

is faced with a huge amount of information and algorithms working on complete sequences

must be practically linear in space and time complexity. On the other side one must take into

account the complexity and richness of the content of the biological sequences.

2 The detection of repeats in a large sequence

2.1 Main tools available for the biologist

The primary work of the biologist to study repeated patterns in a sequence, with respect to

itself or another one, is to build a dot matrix, i.e. an array indexed by the positions in the se-

quences, with a dot in each cell where corresponding letters in the sequences are equal or highly

similar. Repeats appear as diagonals in the matrix. This method is still used particularly in

some standard algorithms of comparison of sequences like FASTA or BLAST [SA90]. Unfor-

tunately, if no heuristics are used, i.e. one looks for exact results, the algorithm is quadratic

with respect to the length of the sequence. Furthermore, the resulting patterns are sometimes

hard to interpret [KMGL87]. It would be unrealistic (in term of computing time and in term

of representation) to expect to analyse 2Mb sequences by this means.

2.2 Algorithms for �nding repeats in strings

Finding all repeats in a sequence is a classical problem in combinatorial studies on strings. It

may be solved in linear space and time [McC76], [CS85], [Apo85].

The principle to solve the problem in linear space is to build a subword tree, providing an index

of all subwords present in the string. In such a tree, each node is associated to a particular

repeated substring. Each parent node is a pre�x of its sibling nodes and the leaves of the tree

are all su�xes of the string (see section 3.1 �gure 1). Furthermore, there are no nodes of degree

one (with one sibling node). This ensures the tree to contain at most 2n nodes, if n is the

length of the sequence.

The �rst algorithm building a su�x tree has been proposed by Weiner [Wei73]. In order to

achieve linear time computation, e�cient algorithms are reading the string character by char-

acter, adding at each step the subword built at the previous step plus or minus the current

character (depending on the direction of reading) in the current tree. In order to be able to �nd

the place of a new subword in the tree without an expensive search in this tree, the algorithm



must maintain an additional structure, a set of shortcut links at each node.

Other representations of the set of repeats have been proposed in the literature, in order

to further compress the number of nodes and edges necessary to code this set. The main

idea is to de�ne an equivalence relation R on the set of nodes of the su�x tree and to build

a deterministic �nite automaton with states corresponding to the equivalence classes of the

relation and transitions corresponding to edges in the su�x tree. Blumer et al. [AB85] have

proposed an algorithm building a directed acyclic word graph (DAWG), where R is simply the

su�x equivalence relation. Lef�evre and Ikeda have proposed [LI93] to build instead a position

end-set tree (PESTry).

2.3 Peculiarities of the treatment of biological sequences

Biological sequences have a few characteristics that entail the necessity to devise new variants of

the basic string algorithms. First of all, the alphabet is very small for DNA or RNA sequences

(size 4). Sequences are also generally splitted into a great number of contigs with gaps of

unknown regions between these contigs. Another complexity level is due to the fact that

observed repeats may be approximative due to independent mutations on the several copies of

a same fragment. Finally, sequences are oriented and both directions are potentially meaningful,

so we must take in account reverse repeats.

3 A browser of sequences

We introduce in this section the tool we have developed for the lexical analysis of large se-

quences. FOREST 2 [JN96] is funded on the search for repeats, i.e. the search for multiple

occurrences of subsequences in a given sequence. It produces two types of structures: dictio-

naries and maps. FOREST is written in C++.

3.1 The dictionary tree

3.1.1 Representation

First FOREST builds su�x trees. Figure 1 shows such a tree for the sequence aagag ($ is

a special character delimiting the end of the sequence). The root of the tree represents the

whole sequence. Leaves of the tree are each position in the sequence. Each intermediate node

represents a set of positions in the sequence, the set of all positions such that all subsequences

(words) starting at these positions have and are the only ones sharing a common beginning

(pre�x). All repeats present in the sequences are present in the tree, with a node for each.

Trees are not a communly used structure in the analysis of biological sequences. So what

are the adventages of building a seemingly complicated result?

First of all, it provides a hierarchical representation of a set of knowledge. The level zero of

this hierarchy (leaves) describes the individual positions in the sequence. Higher levels describe

2
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Figure 1: su�x tree for the word aagag$

sets of positions. Each of those sets may be summarized with a property checked on all its

members or some statistics on its elements.

For instance, the interest of the biologist may focus on the length of the longest repetition in a

given sequence or set of sequences. For the purpose, a \length" attribute is associated to each

(interior) node in the tree. The length of a level one node (just above leaves) is the length of

the common pre�x of its leaves. Attributes are then computed (synthetised) from the leaves

to the root of the tree. The value of greater level nodes is the maximum of the lengthes of its

sibling nodes. The root gives the length of the longest repeat in the whole sequence.

Thus, higher levels in the hierarchy describe higher more abstract views of the sequence. This

way, the biologist may explore the whole tree, starting from the root node or choose the node

of a given repeat, keeping at each node the knowledge of what he may expect to �nd in the

rest of the tree.

The second interest of the tree is that it allows a contextual access to the information. Each

parent node in a tree summarizes a context common to all nodes under it. This context may be

generally derived from synthesized attributes. In the opposite direction, it o�ers a structured

�ltering capacity, the information appearing at a node being cleared from information already

known in parent nodes. This is particularly useful to reveal a �ne phenomena that would

be otherwise hidden by an already known strongest phenomena or, on the contrary, to help to

throw away simple artefacts due to major evidences at a higher level. The context is represented

in the tree with herited attributes. We have used them to �lter interesting nodes, based on a

criterion of \signi�cativity" of the number of occurrences of a word in a sequence.

What is the cost of building such a tree? Our program is funded on the Chen and Sefeiras

algorithm [CS85]. Even if the size of the tree is linear with respect to the length of the sequence,

a particular attention on its internal representation is necessary. For sequences of N megabases,

a tree has an average number of 1:7 106 N nodes. If each requires � words to be coded, this

leads to an amount of 1:7� N megabytes of memory.

Contigs need a special treatment. Repeats may be localized on di�erent contigs but a given

repeat cannot span over two contigs. We have chosen to build a single sequence made of all

contigs separated with the special delimiter character $. The construction algorithm is adapted



to handle the $ character. It remains linear in size of the whole sequence (for each new analysed

position, one builds at least a new leaf if it corresponds to a repeat never seen before and at

most a node and a leaf if it is a new occurence of an old repeat).

3.1.2 Illustration on E. coli genome

We have applied FOREST to the study of contigs of E. coli and B. subtilis [KVD95], [MVHD93],

[MGD95]. For E. coli, we have analysed a sequence of more than 3.2 megabases, built up from

the concatenation of all available sequences. A biological meaningful analysis requires a great

number of exchanges between the computer scientist and the biologist and is not the subject

of this paper. Our aim here is just to demonstrate that our tool may be e�ectively applied to

huge sequences.

First, we give a partial view in �gure 2 of a graphical representation accessible in FOREST for

the whole set of contigs of Escherichia coli. Colors are not reproduced in the document. A scale

of colors is associated to the scale of values of an attribute (e.g. the number of occurrences)

and this allows the reader to quickly \apprehend" the distribution of values in the tree.

Figure 3 shows the view proposed by FOREST after clicking on node AGGAGG in a pre-

vious tree : AGGAGG appears at the root of the tree and a (limited in depth) view of the

(sub)tree of all repeats in E. coli starting with AGGAGG is displayed. It is clear that this

representation is not well adapted for a paper output. On a screen, the user may \browse"

interactively, that is quickly explore the whole tree and choose at any time a particular node,

in order to deepen its knowledge on a speci�c aspect of the tree. For this purpose he may either

request complementary information or choose to further develop this node.

3.2 Biological and logical maps

3.2.1 Distribution of repeats in a sequence

Once potentially important or intriguing words or patterns have been isolated, the next step in

the experimental process of discovery is to study the distribution of these words in the sequence.

We use a standard mean for the biologist to represent the location of features in the se-

quence. As it is the case for genetic or physical maps, linear maps are associated with selected

attributes or features computed in the dictionary. If the line represents the sequence, we call

it a biological map. FOREST can compute and display several superposed maps for various

features on the same sequence. E.g., positions of start and stop codons or, if it is known,

position of genes may be associated to such maps. This simple mechanism allows to compare

and to study the occurrence of various informations along the sequence. For instance, one may

compare the positions of a given pattern with respect to known coding sequences. Since the

underlying representation of those maps are boolean vectors, various logical operators (and, or,

...) may be easily applied to them in order to emphasize in a new map the intersection, union

or di�erence in the distribution of the corresponding informations.

Figure 4 shows the distribution of Shine-Dalgarno pattern (SD) AGGAGGT in E. coli for

each reading frame. It also provides the distribution of the palindromic sequence ACCTCCT.



Figure 5 shows a zooming on an interesting area, allowing to compare the position of SD with

respect to the beginning of a gene.

Biological maps are just one particular case of a more general way to visualize the links

between two kind of data. Instead of considering the distribution of an information in the

biological sequence, one may choose another reference space. For example, consider the space

of all subwords of length 3, lexicographically ordered. We can display the corresponding map,

as it is the case for the sequence. If the information selected is \the number of occurences

of subword is low (below a given threshold)", then the map provides the distribution of rare

codons.

3.2.2 Study of two words associations

A particularly important case of map comparisons consists to detect close coocurrences of two

words in a sequence. However, interesting attributes or features in that case are not associ-

ated to word themselves but to their surrounding context. In our previous example, once the

SD pattern and the start pattern have been recognized, the most important feature would be

to characterize the contexts where a translation occurs. It would allow to better predict the

starting positions of unknown genes along the sequence, SD being not su�cient for that purpose.

The very same concepts de�ned so far, su�x trees and distribution maps, are su�cient to

handle the issue with minor adaptations. Instead of considering the map of all positions of a

word, one may select the position lying in a given range around the word. Intersecting such a

map with the map of the second word determines the context areas in the sequence where both

words occur. The set of all context areas may then be studied in the same way contigs have

been studied. A su�x tree may be build and the whole process applied iteratively, adding new

words or new constraints in the selection of contexts.

3.3 Filtering the information

Although all repeats are potentially relevant in a sequence, a biologist cannot take into account

such a huge quantity of information, even it is hierarchically organized. He must focus on a

few aspects, and it is generally in terms of extremal features. For instance, interesting words

will be repeats with a particularly high number of occurrences or, on the contrary, particulary

short words. The next question to be solved becomes then \how can we help to simplify the

results of the analysis?".

We have studied several types of selectors to emphasize the most prominent aspects of a

pattern with respect to a sequence and/or to determine relevant patterns to be kept while

pruning the su�x tree. Necessary �lters may be splitted in two main categories.

The �rst one corresponds to selection on statistical criteria. This selection can operates on

the value of synthetized attributes in the tree. For instance, one may �lter words according

to their length. This allow to select only nodes (i.e. set of positions in the sequence) where

at least two positions share a common word whose length is greater than a given threshold.

In other words, one selects the longest repeats and as a particular case, the root provides the



longest repeat in the sequence. Statistical selection may be funded on much more elaborated

criteria, as long as linear computations are possible. However, using only synthetized attributes

may be unsu�cient in this respect. We have brought in evidence the possible use of herited

attributes, while studying the \signi�cativity" of the number of occurrences in a sequence of

a given word. The number of occurrences is easily computed as a synthetized attribute. For

all leaves of the su�x tree, its value is 1. Then the value for any other node is the sum of

values of its siblings. The biologist is most interested by words with unusual number of oc-

currences (abnormally low or high). But abnormality is a context-sensitive concept. A word

may be abnormal either because it is made of subwords abnormal themselves or because of its

proper contribution. It is clear that the second alternative is preferable. We therefore estimate

for each node the conditionnal probability of the presence of the corresponding word with re-

spect to the observed number of occurences of its parents. This allows to take into account

known bias on the distribution of some words (e.g. the distribution of codons) while studying

longer pattern including these words. We can see in �gure 2 symbols associated to the \sig-

ni�cativity" criteria (e.g. ++ for abnormally high number of repeats and { for abnormally low).

The second category of �lter corresponds to selection on symbolic criteria (lexical or syntaxi-

cal). A simple example of lexical �lter is the selection of words beginning with ATG, GTG or

TTG. This restriction focuses the construction of the tree on areas of the sequence potentially

at the beginning of a coding sequence.

We are working on more structural �lters. For instance, it would be useful to be able

to select the presence of a word at a given distance from another one. But su�x trees are

\directed" structures. They allow to study what follows a given word in a sequence but not

what is preceding this word. The most general solution to handle this probleme is to build a

second tree for the reverse sequence. A second possibility is already been describe before: it

consits to build a new tree representing the context of the word.

4 Conclusion

We have developped a tool allowing to browse in a large sequence, in the search of repeats. To

our knowledge, it is a totally new way of approaching the analysis of sequences and we claim

that it becomes necessary due to the size of available sequences. However, what we have called

repeats in this paper is mainly the exact copy of words. It is well known that the biological

concept of repeat is far more complex. The mechanism of duplication includes evenements such

as inversions and mutations. Preliminary works suggest that these useful extensions might be

taken into account in our framework [Leu91], [NEM96].
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