
HAKKE: A Multi-Strategy Prediction System for

Sequences

Naohiro Furukawa 1 Satoshi Matsumoto 1 Ayumi Shinohara 1

Takayoshi Shoudai 1 Satoru Miyano 2

ffurukawa, matumoto, ayumi, shoudaig@i.kyushu-u.ac.jp
miyano@ims.u-tokyo.ac.jp

1 Department of Informatics, Graduate School of Information Science and

Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-81 Japan

2 Human Genome Center, Institute of Medical Science, University of Tokyo

4-6-1 Shirokanedai, Minato-ku, Tokyo 108 Japan

Abstract

We developed a machine learning system HAKKE which is suitable for predicting

functional regions from sequences, such as protein-coding region prediction, and trans-

membrane domain prediction. HAKKE is a hybrid system cooperated by a number of

algorithms of a pool to make an accurate prediction. The system uses an extension of

the weighted majority algorithm in order to �t the strength of each algorithm into given

training examples. In this paper, we describe the core of the system and show some ex-

perimental results on transmembrane domain and �-helix predictions.

1 Introduction

Databases of DNA and amino acid sequences compile many sequences where some regions of

speci�c functions or structures are indicated as segments. For example, �-helices, �-sheets,

transmembrane domains, exons and signal peptides are speci�ed by positions on the sequences.

In this paper we call such speci�ed regions as marked regions.

For each family of sequences with marked regions of a speci�c type, some programs have

been developed for predicting such marked regions on unknown sequences. For example, Chou-

Fasman's method [1] is well known for predicting the �-helices and �-sheets. The hydropathy

plot of Kyte and Doolittle [2] predicts transmembrane domains on amino acid sequences of mem-

brane proteins. For coding region prediction in DNA sequences, GRAIL [5] and GRAIL II [6]

are known as successful systems.

Instead of designing a prediction program individually for a speci�c family of sequences,

we are developing a universal prediction system HAKKE for general use. HAKKE is a hybrid

system which cooperates with algorithms of a pool and produces a prediction algorithm by

employing an extension of the weighted majority (WM) algorithm in [3] for adjusting the

weights of algorithms. HAKKE assumes a pool of algorithms for prediction. The algorithms

in the pool are provided in two ways. First, given a sample collection of sequences with

marked regions, HAKKE has an ability to automatically generate candidate algorithms which

may predict the marked regions of the sequences. In addition to these candidate algorithms

generated by HAKKE, users can add into the pool some ad hoc algorithms based on their

domain knowledge on the sequences.

The advantage of HAKKE is three folds. The �rst is the simple use of the system. For

an unknown sequence which may belong to some family of sequences with marked regions, a

user simply needs to supply a sample collection of sequences with marked regions in the family

together with the unknown sequence. Then HAKKE makes a prediction of marked regions on

the unknown sequence and also produces a program for this prediction that may be used for

further prediction.

The second is the possibility of �nding a better predictor. The WM algorithm has a possi-

bility to produce a correct prediction algorithm even if none of the prediction algorithms in the

pool is exactly correct. Our WM algorithm allows \I don't know" answer in addition to \yes"

and \no" if a prediction algorithm does not have enough con�dence. Some experiments show

that the use of abstention in the voting system is helpful to make good prediction algorithms.

The current version of HAKKE employs BONSAI [4] for generating candidate prediction al-

gorithms from sample sequences. Although BONSAI is not a universally powerful system, it

succeeded to �nd good knowledge in its experiments [4] and therefore the prediction algorithms

based on this acquired knowledge have a chance to be good ones. Furthermore, ad hoc pre-

diction algorithms, which are recognized as good predictors, can be enrolled in the pool of

the prediction algorithms. Since HAKKE hybridizes these ad hoc prediction algorithms with a

large number of prediction algorithms generated by BONSAI by the weighted majority voting

with abstention, the prediction algorithm produced by HAKKE would be at least as good as

each prediction algorithm in the pool and is likely to achieve more accurate prediction power.

The third is that HAKKE works as a knowledge discovery system. Prediction algorithms

generated by BONSAI are constructed from decision trees over regular patterns and alphabet

indexings [4]. Therefore we can regard each prediction algorithm as a knowledge representa-

tion of the data. The program produced by HAKKE shows which prediction algorithms are

important by their weights. Thus HAKKE involves a process of knowledge discovery.

This paper describes an overview of HAKKE system and show some experimental results

performed by a prototype of the system. The current version of HAKKE is not equipped with

ad hoc algorithms. The preliminary experiments on transmembrane domain prediction and

�-helix prediction convinced us that the system is enough practical and useful.

2 Preliminaries

In the literature, many e�orts have been made to develop a prediction system for a speci�c

family of proteins. For example, the sequence in Figure 1 is an amino acid sequence of a protein

where the underlined segments are �-helices. The �-helix prediction problem is to determine

the segments for �-helices on unknown sequences.

MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKGELDKAI

GRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALI

NMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVI

TTFRTGTWDAYK

Figure 1: The underlined segments are �-helices.

The main concern of this paper is to cope with such problems in a general framework. This

section provides a terminology for this general framework.

Let � be a �nite alphabet. We call elements in �� strings or sequences. We use both names

for calling the elements in ��. For a string s in ��, we denote by s[i] the i-th character of s,

and by s[i::j] the substring s[i]s[i+ 1] � � � s[j].

De�nition 1. Let B = f0; 1g. A pair e = (s;m) of strings s in �+ and m in B+ with jsj = jmj
is called a marked example. The string m is called a marking of e. A maximal nonempty

substring s[i::j] of s marked with 1 is called a marked region of s, i.e., m[i::j] is in f1g+ and no

m[i� k::j + l] with k + l � 1 is in f1g+. In a similar way, an unmarked region of s is de�ned

as a maximal nonempty substring s[i::j] of s marked with 0.

Example 1. Let (s;m) be a marked example, where s = aabbbabaab and m = 0111001100.

Then substrings s[2::4] = abb and s[7::8] = ba are marked regions and s[1] = a, s[5::6] = ba

and s[9::10] = ab are unmarked regions. On the other hand, the substring s[3::6] is neither a

marked region nor an unmarked region.

A mapping ' : �+ ! B+ is called a marking on �+ if j'(s)j = jsj for all s in �+. A marking

de�nes the set E(') = f(s; '(s)) j s 2 �+g of marked examples.

Informally, a predictor generator is a program which produces from marked examples of an

unknown marking ' a program realizing the marking '.

3 Weighted Majority Algorithm

This section reviews the idea of the weighted majority algorithm (WM, for short) by Littlestone

and Warmuth [3] and presents an idea of extending WM for our HAKKE system.

WM assumes a pool of prediction algorithms, each of which answers 0 or 1 for any question.

WM is a kind of master algorithm [3] that uses the prediction algorithms of the pool to learn

a prediction algorithm. Initially, WM assigns a positive weight to each algorithm of the pool.

WM makes its prediction by weighted majority voting of the algorithms. When the prediction

of WM was incorrect, WM gives a penalty to each algorithm which voted incorrectly: the

penalty is done by decreasing the weight by multiplying a �xed real number � (0 � � < 1)

called the penalty parameter. If � > 0, WM gradually decreases the inuence of algorithms

which made more mistakes and gives relatively high weights to the algorithms which made less

mistakes. In case that � = 0, WM ignores the algorithms of the pool that are inconsistent with

given examples, since the all weights of the algorithms which have ever incorrectly voted are

set to be zero. In this way, WM constructs a prediction algorithm by determining the weights

of the algorithms of the pool.

For the design of HAKKE, we extend WM in two ways. The �rst extension is due to a

practical demand. We separate the penalty parameter � into �0 and �1: We use �0 for the

case that the prediction of WM is 0 but the correct answer is 1. On the other hand, �1 is

used for the case that the prediction of WM is 1 but the correct answer is 0. The aim of these

parameters is to distinguish the accuracy for marked regions from that for unmarked regions,

since the ratio of marked regions to unmarked regions varies widely according to the data. By

selecting �0 and �1 appropriately, we can control the behavior of the predictor produced by the

system.

The second extension is an introduction of \abstention" in the voting. Namely, each algo-

rithm in the pool is permitted to answer \I do not know" to the questions for which it has little

con�dence. Thus the answers of the algorithms are chosen from f0; 1; �g, where the symbol �
means \abstention". If the prediction of WM was incorrect, the weights of algorithms which

made abstention are each multiplied by a �xed real number . A weaker penalty is given to

abstention from voting, i.e., 0 � �0; �1 < � 1. If all algorithms of the pool answers �, then
our extended weighted majority algorithm makes a default prediction, 0 or 1. We denote by

WM� the weighted majority algorithm extended in this way.

Remark 1. The majority voting strategy with abstention has the following advantages. First,

there are some cases that the majority voting by WM increases its prediction ability. For

example, let � = fa; b; cg and ' : �! f0; 1g be a function de�ned by '(a) = '(b) = '(c) = 1.

The pool of prediction algorithms consists of functions f1, f2 and f3 such that f1(a) = f1(b) = 1,

f1(c) = 0, f2(b) = f2(c) = 1, f2(a) = 0, and f3(a) = f3(c) = 1, f3(b) = 0. Then WM predicts

exactly the same function as ' when weights w1 = w2 = w3 = 1 are given to the prediction

algorithms f1, f2 and f3, respectively. On the other hand, ' 6= fi for 1 � i � 3.

Remark 2. The use of abstention also increases the prediction ability. Let � = fa; bg and let

 : � ! f0; 1g be a function de�ned by (a) = (b) = 1. The pool consists of the functions f

and g be such that f (a) = g(b) = 1 and f(b) = g(a) = 0. Note that WM cannot produce the

same function as for any weights on f and g. By introducing \abstention", we divide f into

two functions f0 and f1 such that f0(a) = 1, f0(b) = �, f1(a) = � and f1(b) = 0. In the same

way, g is divided into g0 and g1 such that g0(a) = 0, g0(b) = �, g1(a) = � and g1(b) = 1. Then

we can verify that the majority voting with abstention correctly predicts for arbitrary initial

weights on the functions in the pool.

4 HAKKE System

In this section, we give an overview of the system HAKKE and describe how HAKKE determines

marked regions of unknown sequences (Figure 2).

AAA
AAA

AA

AA
AA

AA
AAAA

AA
AAA
AAA
AAA
AAA

set of marked examples

HAKKE
system

predictor

unknown
sequences

AAA

AAAAA
AA
AA

sequences
predicted

INPUTINPUTINPUT

OUTPUTOUTPUTOUTPUT

Figure 2: Overview of HAKKE

As input, HAKKE takes a set of marked examples for predicting a marking ' of an unknown

sequence. After a number of weighted majority votes, the system produces a predictor which

approximates the marking ' of the unknown sequence. HAKKE is a hybrid system which

cooperates with a pool of prediction algorithms. Given a set S of marked examples, HAKKE

can automatically generate candidate algorithms for the pool. In addition to these algorithms

for the pool, users can supply ad hoc algorithms for the pool.

We assume that HAKKE has n prediction algorithms P` with weight w` for 1 � ` � n in the

pool. Given N marked examples ei = (si; mi) for 1 � i � N , HAKKE executes the following

two stages for all si[j] (1 � i � N; 1 � j � jsij):

Stage 1: For each 1 � ` � N , P` takes si and an integer j as an input and predicts whether

si[j] is in some marked region of ei or not. P` outputs one of the following three types of

predictions: (1)\ yes" (or 1), this means si[j] is in some marked region, (2) \no" (or 0),

si[j] is not in any marked regions, and (3) \abstention" (or �).

Stage 2: The master algorithm computes the sum score1 of all weights of the prediction al-

gorithms whose prediction is 1. In the same way, the master algorithm computes the

sum score0 of all weights of the prediction algorithms whose prediction is 0. Then it

compares score1 and score0 and makes a prediction p. According to the correctness of

the prediction p, it determines the weight of P`.

A formal description of the algorithm is given in Figure 3. The master algorithm produces a

predictor which consists of the prediction algorithms with the weights determined by repeating

the above two stages for each marked example.

Input

S = f(s1;m1); (s2;m2); � � � ; (sN ; mN)g : a set of marked examples;

P1; � � � ; Pn : prediction algorithms;

Output

w1; � � � ; wn : weights of prediction algorithms (0 � w` � 1);

Algorithm HAKKE

begin

forall 1 � ` � n do w` := 1;

for i := 1 to N do

for j := 1 to jsij do begin

score0 := score1 := 0;

forall k 2 f0; 1g do
forall ` such that the prediction of P` for si[j] is k do

scorek := scorek + w`;

if score1 > score0 then p := 1 else p := 0;

if p 6= mi[j] then begin

forall ` such that the prediction of P` for si[j] is p do

if p = 1 then w` := w` � �1 else w` := w` � �0;
forall ` such that the prediction of P` for si[j] is � do

w` := w` � ;
end;

end;

output w1; � � � ; wn;

end.

Figure 3: Weighted majority algorithm with abstention

The accuracy of a predictor produced by HAKKE is represented by a 5-tuple (p0,p1,p2,p3,p4),

where p0, called the total accuracy, means the ratio of correctly predicted positions to the

whole sequences, p1% of marked regions are recognized as positive by the predictor, p2% of

unmarked regions are recognized as negative, p3% of predictions for marked regions is correct,

and p4% of predictions for unmarked regions is correct. We de�ne the score of the predictor

by p0 � p1 � p2 � p3 � p4. By employing a local search technique, HAKKE changes the penalties

�0, �1 and and �nds weights for the prediction algorithms with which the resulting predictor

attains a higher score.

5 Method and Experiments

This section reports the method and experiments performed by a prototype HAKKE system

for �-helices and transmembrane domains.

5.1 Method

The current version of HAKKE is not equipped with any ad hoc algorithms yet. In order

to generate a pool of prediction algorithms from a set S of marked examples, we applied

BONSAI system [4]. First we prepared two sets POSw and NEGw of strings of length w

(w = 1; 3; 5; : : :) from marked examples (s;m) 2 S as follows: For each position j in s, the

string sj;w = s[(j�bw=2c)::(j+bw=2c)] is in POSw if m[j] = 1, and sj;w is in NEGw if m[j] = 0.

That is, a substring of s whose length is w is in POSw if its center is in a marked region, and in

NEGw otherwise. BONSAI takes POSw and NEGw as inputs, and produces a pair (DTw; I) of

a decision tree over regular patterns and an alphabet indexing (Figure 4) which classi�es POSw
and NEGw approximately correctly.

A C D E F G � � � W Y

0 1 2 1 0 1 � � � 2 1
Alphabet Indexing

x011y

?

�

��

0

no

-

yes
x2011y

?

�

��

1

no

-

�

��

0
yes

Decision Tree over Regular Patterns

Figure 4: A decision tree over regular patterns and an alphabet indexing

We regard (DTw; I) as a prediction algorithm for a pair (s; j) of a string s and an integer j

with 1 � j � jsj as follows: Let sj;w be the substring of s of length w centered at j. First we

transform sj;w into I(sj;w) according to the alphabet indexing I. Then the decision tree DTw
determines the class name 0 (\not in any marked regions") or 1 (\in a marked region").

In order to introduce abstention, we constructed two kinds of decision trees DT+

w and DT�w
from a decision tree DTw in the following way: DT+

w is identical to DTw except that all 0-labels

of the leaves in DTw are replaced with �. Similarly, DT�w is obtained from DTw by replacing

all 1-labels of the leaves with �. That is, DT+

w predicts only 1 or abstains, and DT�w predicts

only 0 or abstains. In the experiments, we used these decision trees with alphabet indexings as

prediction algorithms of the pool, and we set the penalty of abstention as = 1.

5.2 Experimental Results

5.2.1 Transmembrane domains

We used the PIR database [7], which contains the amino acid sequences with FEATURE �eld

where transmembrane domains are indicated. In this experiment, we regarded the transmem-

brane domains as marked regions. We collected 356 amino acid sequences with transmembrane

domains and we chose 36 sequences as marked examples that were used by HAKKE for gener-

ating a predictor.

The experimental results show that the prototype HAKKE system is su�ciently powerful

to generate good predictors. Even without abstentions (shown in the last line of Table 1), the

score 0.173 of the produced prediction algorithm is much higher than that of any prediction

algorithms in the pool. Moreover, these experimental results show that the use of abstention

makes the prediction ability higher: the score 0.207 using abstention is slightly higher than

that without using abstention.

Table 1: Results on transmembrane domain sequences

p0 (%) p1 (%) p2 (%) p3 (%) p4 (%) Score

DT1 63.5 67.5 63.2 13.1 95.9 0.034

DT3 75.8 71.5 76.1 19.8 97.0 0.079

DT5 72.6 76.2 72.3 18.4 97.4 0.072

DT7 76.7 71.7 77.1 20.5 97.1 0.084

DT9 78.8 70.8 79.4 22.1 97.1 0.095

DT11 82.2 65.8 83.6 24.8 96.7 0.109

DT13 80.4 64.1 81.7 22.4 96.5 0.091

DT15 81.8 62.0 83.4 23.6 96.4 0.096

DT17 81.6 62.3 83.4 23.6 96.4 0.096

DT19 82.4 56.6 84.5 23.1 95.9 0.087

DT21 83.6 58.9 85.6 25.2 96.2 0.102

DT23 80.4 59.1 82.1 21.4 96.1 0.080

generated predictor

(with abstention)
91.6 54.6 94.6 45.6 96.2 0.207

generated predictor

(without abstention)
87.9 65.5 89.8 34.6 96.9 0.173

5.2.2 �-helices

We used the PDB database [8] that contains the amino acid sequences associated with their

three dimensional coordinates. By using the DSSP program [9] which translates three dimen-

sional coordinates into the secondary structures, we marked the positions of �-helices in the

amino acid sequences. We regarded the �-helices as the marked regions. We collected 4835

amino acid sequences with �-helices and 484 sequences were used as marked examples.

Table 2 shows the experimental results. From Table 2, we can observe that these experi-

mental results on �-helices are similar to those on transmembrane domains.

Table 2: Results on �-helix prediction

p0 (%) p1 (%) p2 (%) p3 (%) p4 (%) Score

DT1 58.0 54.8 59.5 39.3 73.3 0.054

DT3 60.0 57.0 61.5 41.5 74.9 0.065

DT5 58.0 59.2 57.4 40.0 74.6 0.059

DT7 58.7 58.4 58.9 40.5 74.7 0.061

DT9 56.7 51.0 59.4 37.6 71.7 0.046

DT11 57.7 50.5 61.1 38.4 72.0 0.049

DT13 58.0 53.1 60.4 39.1 72.8 0.053

DT15 55.7 48.1 59.4 36.2 70.5 0.041

DT17 57.0 52.5 59.2 38.2 72.2 0.049

DT19 57.0 52.9 59.0 38.2 72.3 0.049

DT21 57.7 47.5 62.6 37.8 71.3 0.046

DT23 57.7 50.8 61.0 38.4 72.1 0.050

generated predictor

(with abstention)
65.3 44.5 75.3 46.4 73.9 0.075

generated predictor

(without abstention)
61.6 56.3 64.2 43.0 75.4 0.072

6 Conclusion

We have described an overview of HAKKE and reported some experimental results obtained

by a prototype system. The experimental results show that the idea of majority voting with

abstention is useful in practice. We veri�ed the power of the combination of plural algorithms,

even if each algorithm is incomplete. The extended majority voting algorithm WM� achieves

higher prediction accuracy than any algorithm in the pool. It also deserves to mention that the

predictor produced by the system is easy to analyze. The algorithms with larger weights in the

pool are more important in the predictor. Unlike the neural network approach, the knowledge

mapped on the predictor can be fed back to the domain experts and may lead to discoveries.

Since the prototype system uses only automatically generated prediction algorithms and is

not equipped with any ad hoc algorithms, the reported prediction accuracy is not very good.

The accuracy can be improved by searching better algorithms for the pool or employing suitable

ad hoc algorithms on the speci�c problem domains.

In future, we will tune up the system especially for \gene �nding".

Acknowledgment

This work is supported in part by a Grant-in-Aid for Scienti�c Research on Priority Areas

\Genome Science" from The Ministry of Education, Science, Sports and Culture in Japan. S.

Matsumoto is a Research Fellow of JSPS and partly partly supported by Grants-in-Aid for

JSPS research fellows.

References

[1] P. Y. Chou and G. D. Fasman, \Prediction of the Secondary Structure of Proteins from

Their Amino Acid Sequence," Advances in Enzymology, Vol. 47, pp. 45{147, 1978.

[2] J. Kyte and R. F. Doolittle, \A Simple Method for Displaying the Hydropathic Character

of a Protein," J. Mol. Biol., Vol. 157, pp. 105{132, 1982.

[3] N. Littlestone and M. K. Warmuth, \The Weighted Majority Algorithm," Information and

Computation, Vol. 108, pp. 212{261, 1994.

[4] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara and S. Arikawa, \Knowl-

edge Acquisition from Amino Acid Sequences by Machine Learning System BONSAI,"

Trans. Information Processing Society of Japan, Vol. 35, pp. 2009{2018, 1994.

[5] E. C. Uberbacher and R. J. Mural, \Locating Protein-Coding Regions in Human DNA

Sequences by a Multiple Sensor-Neural Network Approach," Proc. Natl. Acad. Sci USA,

Vol. 88, pp. 11261{11265, 1991.

[6] Y. Xu, J. R. Einstein, R. J. Mural, M. Shah and E. C. Uberbacher, \An Improved System

for Exon Recognition and Gene Modeling in Human DNA Sequences," Proc. the Second

Internatinal Conference on Intelligent Systems for Molecular Biology, AAAI Press, pp.

376{383, 1994.

[7] National Biomedical Research Foundation, \Protein Identi�cation Resource," 1994.

[8] F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. E. Meyer Jr, M. D. Brice, J. R. Rodgers,

O. Kennard, T. Shimanouchi and M. Tasumi, \The Protein Data Bank: a Computer-Based

Archival File for Macromolecular Structures," J. Mol. Biol., Vol. 112, pp. 535{542, 1977.

[9] W. Kabsch and C. Sander, \Dictionary of Protein Secondary Structure: Pattern Recogni-

tion of Hydrogen-Bonded and Geometrical Features," Biopolymers, Vol. 22, pp. 2577{2637,

1983.

