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Abstract

A new method for combining protein motif dictionary to gene �nding system is pro-

posed. The system consists of Hidden Markov Models (HMMs) and a dictionary. The

HMMs represents the nucleotide acid bases, the codons, and the amino acids. The 'words'

in the dictionary is described by the sequence of these HMMs and represent the non-

coding regions, the codons, protein motifs, tRNA regions and signals in DNA sequences.

The statistics between these regions are expressed by the "grammar", which is a stochastic

network of the 'words.'

Using the same kind of technique of speech recognition by HMMs with a word dictio-

nary and a grammar, the stochastic network of 'words' enables the motif dictionary to

be used during the parsing of the DNA sequences. At the same time, the information of

the di-codon statistics, which are known as the important parameters, is included in the

stochastic network. As a result, while the system parses DNA sequences and �nds the

coding regions, the protein motifs are automatically annotated in the regions. It helps to

identify the functions of the genes and reduces the cost of homology search for each hy-

pothetical coding regions. This method is di�erent from simply using the the information

of homology search. This method uses the information of the motif patterns during the

parsing process, but searching the motif patterns after/before �nding the coding regions

cannot directly a�ect the parsing process itself. Experimental results have shown that this

method correctly �nds and annotates the motifs in the coding regions in the DNA sequence

of cyanobacterium.



1 Introduction

The progress of the sequencing projects and the resulting large sequence data demands the

computational biologists to develop e�ective systems to detect genes in the DNA sequences.

([2]). In this paper, we propose a new method for combining a protein motif dictionary to gene

�nding system based on hidden Markov models (HMMs).

1.1 HMMs in gene �ndings

Because genes have a structure like a language, linguistic methods are e�ective ([3]). However,

the components and the rules of the 'DNA language' are non-deterministic, it is necessary to

combine the statistics and the linguistics for the 'parsing' of DNA. That is why hidden Markov

models (HMM) are becoming widely used for gene recognition ([9][10][13][14]).

In order to build a stochastic "DNA language" by using HMMs, we model the components

of the gene structure by HMMs and connect these HMMs by the rules which represents the gene

structure. From a view point of stochastic grammar, a HMM is a stochastic regular grammar.

Regular grammar can be expressed by the networks of the symbols. A nice feature of regular

grammar is its modularity. A network of the networks which represent regular grammars

becomes a regular grammar. HMMs have the same property: a network of the networks which

represent HMMs becomes an HMM. If we model the promoters, codons, amino acids, motifs

and other objects on DNA by HMMs (for example, Figure 3), the networks of these objects

form a new HMM (for example, Figure 1). This means we can parse the whole DNA sequence

by the combined HMMs using a dynamic programming algorithm (Baum-Welch algorithm).

Same kind of parsing was used for protein structure prediction in [1].

1.2 Previous work

One of the authors developed a gene �nding system based on hidden Markov models to detect

the protein coding regions within 1M base continuous sequence data of cyanobacterium, Syne-

chocystis sp. strain PCC6803, and achieved the recognition accuracy 90.7% for coding regions

and 88.1% for intergenic regions ([14]). The recognition performance of that work was good,

although the implementation of the models was simple. In that system, the parameters of each

HMMs had been decided separately, using the concept of modularity described in Section 1.1.

That is analogous to the training of parameters 'with labels' in speech recognition [15]. The

main statistics between HMMs were bigrams, which is a �rst order Markov model (not 'hidden'

Markov model).

1.3 HMMs with a motif dictionary

In order to build an e�ective gene recognition system, it is important to build good models of

genes. Many parameters for the modeling of coding/non-coding regions have been proposed,

most of which represent the local characteristics of the genes. However, it is more desirable to

have stochastic models of these proteins than to have merely the local statistics of the genes,

because the coding regions are translated into proteins and the sequences of coding regions have

the feature of the real amino acid sequences of proteins. The signi�cant improvement taken in



this paper is that we have combined stochastic protein motif models to the gene recognition

system, while the HMM gene models are basically same as used in the previous work [14].

By using a motif dictionary as a component of the system, the motif names are annotated

on the candidate of the coding regions (Figure 2). Note that to have protein models with the

system is di�erent from the popular technique of homology search of the hypothetical coding

regions. The latter searches the database before or after the system decides the candidate of

the coding regions, while the former uses the information of the database during the process of

deciding the candidate of the coding regions.

We have built the gene recognition system using speech recognition software (HTK[15]). The

codons, amino acids, intergenic models are built by HMMs, taking the natural output symbols

as the four kinds of bases, 'A','C','G','T'. Using these HMMs as 'phonemes,' we have constructed

the 'word' dictionary, whose vocabulary is the protein motifs. The recognition process is exactly

the same as the dynamic programming parsing of the speech, using a grammar de�ned on these

'words.'

2 Data

2.1 DNA sequences

We used the same DNA sequence as that of the previous work ([14]), a contiguous sequence

of 1M base of a unicellular cyanobacterium, Synechocystis sp. strain PCC6803 for the gene

recognition. The sequence is divided into 8 entries in GenBank (D63999 - D64006) with poten-

tial protein coding regions in the annotations ([8][7]). We respected the eight divisions of the

sequence and used each division as a test set. Training data sets are created from the remaining

7 divisions, excluding the division of test set. The data of training sets determine the HMM

parameters and a test set was used to validate the recognition ability of HMM based on param-

eters derived from the training set. The parameters include those for the coding regions and

those for the intergenic regions by using the annotations of the coding regions in the entries.

Each entry was used twice as a test set: a test set to evaluate detection of coding in the normal

direction and that to evaluate detection in its complementary direction.

2.2 Protein motifs

In order to construct a motif dictionary for the gene recognition system, we extracted 1149 motif

entries from PROSITE release 13.0([11]), and selected 933 motif patterns as the candidate of

the 'words' in the motif dictionary. We selected these patterns according to an evaluation score

based on the speci�city of the patterns. For example, A-[PN]-S-[VIL] is 20/1 speci�c ('A'

and 'S') in two positions, 20/2 ('[PN]') and 20/3 ('[VIL]') speci�c in each position. The overall

speci�city is the product of these values. The higher speci�city is preferable in order to avoid

the 'pattern match by chance.' We searched the data of annotated coding regions described in

Section 2.1 by these 933 motif patterns, and found 156 hits of 76 patterns. We adopted these

76 patterns (Table 1) as the vocabulary of the motif dictionary for the gene recognition system.



Table 1: Vocabulary of the motif dictionary

PS00021 KRINGLE PS00028 ZINC FINGER C2H2 PS00029 LEUCINE ZIPPER

PS00039 DEAD ATP HELICASE PS00054 RIBOSOMAL S11 PS00074 GLFV DEHYDROGENASE

PS00093 N4 MTASE PS00097 CARBAMOYLTRANSFERASE PS00138 SUBTILASE SER

PS00154 ATPASE E1 E2 PS00157 RUBISCO LARGE PS00163 FUMARATE LYASES

PS00168 TRP SYNTHASE BETA PS00171 TIM PS00179 AA TRNA LIGASE II 1

PS00188 BIOTIN PS00196 COPPER BLUE PS00198 4FE4S FERREDOXIN

PS00244 REACTION CENTER PS00296 CHAPERONINS CPN60 PS00297 HSP70 1

PS00329 HSP70 2 PS00337 BETA LACTAMASE D PS00343 GRAM POS ANCHORING

PS00365 NIR SIR PS00370 PEP ENZYMES PHOS SITE PS00381 CLP PROTEASE SER

PS00382 CLP PROTEASE HIS PS00395 ALANINE RACEMASE PS00442 GATASE TYPE I

PS00461 6PGD PS00480 CITRATE SYNTHASE PS00534 FERROCHELATASE

PS00571 AMIDASES PS00600 AA TRANSFER CLASS 3 PS00614 IGPS

PS00632 RIBOSOMAL S4 PS00665 DHDPS 1 PS00666 DHDPS 2

PS00667 COMPLEX1 ND1 1 PS00668 COMPLEX1 ND1 2 PS00674 AAA

PS00693 LUM BINDING PS00698 GLYCOSYL HYDROL F9 2 PS00704 PROK CO2 ANHYDRASE 1

PS00715 SIGMA70 1 PS00742 PEP ENZYMES 2 PS00806 ALDOLASE CLASS II 2

PS00815 AIPM HOMOCIT SYNTH 1 PS00816 AIPM HOMOCIT SYNTH 2 PS00839 SUMT 1

PS00840 SUMT 2 PS00844 DALA DALA LIGASE 2 PS00846 HTH ARSR FAMILY

PS00859 GTP CYCLOHYDROL 1 1 PS00860 GTP CYCLOHYDROL 1 2 PS00866 CPSASE 1

PS00870 CLPAB 1 PS00871 CLPAB 2 PS00889 CNMP BINDING 2

PS00893 MUTT PS00906 UROD 1 PS00921 NITRIL CHT 2

PS00936 RIBBOSOMAL L35 PS00937 RIBBOSOMAL L20 PS00954 IGP DEHYDRATASE 1

PS00955 IGP DEHYDRATASE 2 PS01042 HOMOSER DHGENASE PS01065 ETF BETA

PS01066 YBR002C PS01071 GRPE PS01094 YER057C YJGF

PS01096 PPIC PPIASE PS01118 SUI1 PS01136 YHDG

PS01139 BACT MICROCOMP

Figure 1: Overview of the gene recognition system



START STOP STOPSTART

4Fe4S Ferredoxin motif Leucine Zipper motif

Coding Region A Coding Region B

Figure 2: Sketch of gene recognition with motif annotation

1 2 3

A CG T A CG TA CG T

1 2 3

A CG T A CG TA CG T

(a) HMM of codon CAT (b) HMM of amino acid Histidine

Figure 3: Examples of HMMs of a codon and an amino acid. The states expressed by the

double circles are special state of null output.

3 System

3.1 System overview

The overview of the system is shown in Figure 1. Each component of the diagram is an HMM.

Codon HMMs including start codons and stop codons are simple 3 state HMMs. An example

of a codon HMM is shown in Figure 3(a). Internal region model is also an HMM, which is

a one-state-HMM in current implementation. Each entry of the motif dictionary de�nes an

sequence of amino acids, which are also HMMs. An example of an amino acid HMM is shown

in Figure 3(b). While these HMMs are connected as shown in Figure 1, the connected groups

in all levels become HMMs because of the modularity described in Section 1.1. For example,

the group of start/stop codons, the codon bigram network, the entries of the motif dictionary,

the dictionary itself, the group of internal codons, and the whole system are all HMMs.

3.2 Implementation

We used HTK ([15]), which is a commercial software for speech recognition, for the parsing of

the DNA sequences. In order to parse the DNA sequences by HTK, we wrote the HMMs, the

dictionary and the grammar in the formats of HTK.

The parameters of HMMs, which represent the stochastic features of the various components

on the DNA sequences, have been decided from the statistical analysis by the authors. Some of

the obvious parameters, for example the probabilities of codon HMMs, have been decided by



1 2 3

A CG T A CG TA CG T

1 2 3

A CG T A CG TA CG T

A CG T A CG TA CG T

1’ 2’ 3’

~h "H" ~h orLIVM

<BeginHMM> <BeginHMM>

<NumStates> 5 <NumStates> 8

<State> 2 <State> 2

~s "baseX" ~s "baseT"

<State> 3 <State> 3

~s "baseT" ~s "baseT"

<State> 4 <State> 4

~s "baseX" ~s "baseR"

<TransP> 5 <State> 5

0.0 1.0 0.0 0.0 0.0 ~s "baseV"

0.0 0.0 1.0 0.0 0.0 <State> 6

0.0 0.0 0.0 1.0 0.0 ~s "baseT"

0.0 0.0 0.0 0.0 1.0 <State> 7

0.0 0.0 0.0 0.0 0.0 ~s "baseX"

<EndHMM> <TransP> 8

0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

<EndHMM>

(a) HMM of 'orLIVMF' (b) HMM of 'orLIVM'

Figure 4: Examples of HMMs 'or' patterns of amino acids: the network expression and the

de�nition �le.



............ ................... .................................................

............ ................... .................................................

PS00029 [LEUCINE ZIPPER] L X X X X X X L X X X X X X L X X X X X X L

PS00039 [DEAD ATP HELICASE] orLIVMF orLIVMF D E A D orRKEN X orLIVMFYGSTN

PS00054 [RIBOSOMAL S11] orDNE V T P X orPA X orDN

PS00074 [GLFV DEHYDROGENASE] orLIV X X G G orSAG K X orGV X X X orDNS orPL

PS00093 [N4 MTASE] orLIVMF T S P P orFY

PS00097 [CARBAMOYLTRANSFERASE] F X orEK X S orGT R T

PS00138 [SUBTILASE SER] G T S X orSA X P X X orSTAVC orAG

PS00154 [ATPASE E1 E2] D K T G T orLIVM orTI

PS00157 [RUBISCO LARGE] G X orDN F X K X D E

PS00163 [FUMARATE LYASES] G S X X M X X K X N

PS00168 [TRP SYNTHASE BETA] orLIVM X H X G orSTA H K X N

PS00171 [TIM] orAV Y E P orLIVM W orSA I G T G

............ ................... .................................................

............ ................... .................................................

Figure 5: An example of entries of motif dictionary

hand. Figure 4 shows the examples of the HMM de�nitions and their corresponding network

expressions.

The dictionary is the collection of all words used by the system. The entries of motifs

are the typical example of words. We used the 76 motifs listed in Table 1. As a 'word', the

motifs are expressed by the sequence of amino acids in the dictionary. Each amino acid is a

simple HMM, whose number of states (3 to 6) depend on the codon patterns of each amino

acid (Figure 3(b)). The special wild card X is also implemented by one HMM. This HMM has

9 states, which randomly produce three base symbols except the combinations of stop codons.

The regular expressions in PROSITE includes the expression like [LIVM], which means that

any of the amino acids in the squared bracket can appear in that position. There are 150 such

'or patterns' in the selected 76 motifs. We constructed the HMMs for those 150 'or patterns.'

If the number of amino acids in a 'or pattern' is large, the network of the corresponding HMM

can be very complicated. In most cases, however, the networks of the HMMs are relatively

simple (Figure 4). Figure 5 illustrates examples of motif entries of the dictionary.

We don't attach probabilities to each words, because probabilities are de�ned on the bigram

of the words. We attach probabilities on the transitions between words. Such probabilities are

expressed by stochastic network of the words, which is the grammar of the system. Each word

can have multiple entries in the dictionary, the bigram is de�ned not on the each entry but

on each word. In current implementation, the codons are also the words, whose sequence of

'phoneme' consist of only one HMM (codon HMM). This enables us to model di-codon usage

by a bigram grammar, which is a �rst order Markov model between words. The di-codon usage

is known as an important statistics ([13]).



4 Results and Discussion

Gene recognition was tested for the data described in Section 2.1, using the motif dictionary

with 76-word vocabulary. The 76 motifs were expanded into 199 patterns. There are 156

hits (by means of regular expressions) in the data, all of which are correctly annotated by our

recognition system with the dictionary. The system recognized the annotated coding regions in

accuracy of around 90% in the scale of base count. Although the annotation of the motifs during

the gene recognition was successful, there was no signi�cant improvement of the accuracy of the

recognition from the previous work. That was actually unavoidable, because most of the coding

regions which includes the motifs in the dictionary had been already recognized correctly by

the previous system.

We can construct such stochastic models of proteins in several ways. One simple way is to

adopt Markov models on the amino acid sequences. Although a bigram was the limit for the

codon usage, trigram or higher Markov models are available for general protein models. That is

because the alphabet of amino acids (20) is much smaller than that of codons (64) and because

general protein database contains more statistics than the genes of speci�c organism.

The simplest way is, however, to have the entries of protein database (such as SWISS-PROT)

themselves as the models of proteins. If there are exact matches, we can annotate the regions as

the matching proteins. Because exact matches are too restrictive for the small changes of amino

acids, we can adopt HMMs of similar proteins as the stochastic protein models. Constructing

the protein HMMs for the large protein data base is an expensive task in time. We put this

for future work. Instead of having the whole protein model, we have adopted the local protein

model, that is the motifs, as the stochastic protein model for the gene recognition.

It is necessary to increase the size of vocabulary of the motif dictionary in order to improve

the recognition accuracy. Because the construction of the motif dictionary from the motif

database is easy, it is not di�cult to increase the 'vocabulary' by automatic conversion. How-

ever, larger size of the dictionary requires more computational time. Therefore, it is important

to select the motifs and their stochastic representation carefully.

It is also necessary to build more precise stochastic models for the motifs. The motif entries

in our dictionary are the automatic conversion from the regular expressions of PROSITE entries.

Use of the stochastic motifs extracted from the DNA/protein sequences ([4]) is preferable.

It is a future work to build more precise model for the intergenic region model. It should

be divided into several models, such as promoters, enhancers and other signals. Using the

method of the authors [13] is an obvious next step. We can also build tRNA HMMs from the

alignments of tRNA. Because tRNA have context free dependency between their bases, it may

be necessary to use stochastic context free grammar (SCFG, [12]).

5 Conclusions

We proposed a new method for using the information of motif database for the recognition of

genes in the DNA sequences. The motifs are represented as the 'words' in the motif dictionary,

and each 'words' are expressed by the sequence of 'phonemes', which is the HMMs of amino

acids on the alphabet of 'A','C','G','T'. The system works just as the speech recognition system,

parsing the DNA sequences into 'words'. As a result, this system annotates the position of



the motifs, which is de�ned in the dictionary, in the protein coding regions. The proposed

gene recognition system succeeded to annotate the motifs in the genes of DNA sequence of

cyanobacterium. In order to improve the recognition accuracy, it is necessary to increase the

size of motif dictionary and to make more precise model for the motifs. Implementation of

more detailed models for intergenic regions is also necessary.
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