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Abstract

Since absolutely reliable recognition of protein-coding regions in eukaryote genomic

DNA sequences by computational methods is unattainable, most existing algorithms try to

keep some balance between underprediction and overprediction. However, in experimental

practice it is often su�cient to have just a few protein-coding segments, but predicted with

high speci�city, that is, with (almost) no overprediction. Such predictions are then used

for construction of oligonucleotide probes and PCR primers for analysis of cDNA libraries

or total cellular RNA.

Here we present a combinatorial algorithm solving this problem. Unlike other predic-

tion schemes, the algorithm uses only the simplest statistical parameters (codon usage and

positional nucleotide sequences in splicing sites) and thus can be used for analysis of ob-

scure genomes, when large learning sets are unavailable. The algorithm's structure allows

one to simply tune it for various experimental settings.

1 Introduction

Recognition of protein-coding regions is one of traditional problems of computational molec-

ular biology. Recently it gained additional importance caused by generation of large amount

of unannotated DNA sequences by numerous sequencing projects, search for disease genes by

positional cloning etc. The traditional approach to gene recognition is based on measuring

statistical di�erences between protein-coding and non-coding sequences and analysis of sta-

tistical properties of exon-intron boundaries (splicing sites), reviewed in [1]. Currently there



exist more than a dozen packages and electronic servers for prediction of individual exons or

complete genes. The recognition quality, de�ned as the average correlation between predicted

and actual genes, usually does not exceed 70% [2], and unless a major breakthrough is made in

understanding the mechanisms of splicing, there are no reasons to hope that it can be increased.

Such predictions can be useful, but in many cases there is no necessity to predict a com-

plete gene, since it will be found experimentally. At the same time, prediction of relatively

short protein-coding segments can be done with almost 100% reliability. In particular, such

predictions can be used for synthesis of oligonucleotide probes or PCR primers with subsequent

screening of cDNA libraries or total cellular RNA. The existing methods are not suitable for

this task, since they do not allow to reliably determine a desired segment, if it is guaranteed

only that overprediction on the average is approximately 20%, and in some cases it can be

much higher.

Another problem is the fact that in many cases the methods based on application of neural

networks or pattern recognition algorithms use a large number of complicated statistical pa-

rameters, and thus require a large learning set consisting of well-characterized sequences. Such

samples are available if one works with traditional genomes (mammals, nematode Caernorabdi-

tis elegans, Drosophila), but they are absent for many important genomes (many invertebrates,

plants, fungi, protists). Finally, most algorithms use linear scoring functions, although non-

linear functions provide better recognition [3].

These problems are addressed by an algorithm based on vector dynamic programming [4]

and computation of partition function of path weights on a graph [5]. At the �rst step the algo-

rithm constructs a set of exon chains (sub)optimal for some simple scoring function. The second

step is based on the following observation: segments occurring in the majority of suboptimal

genes are truly coding. Thus segment weights are recomputed using the partition function,

and a small number of highest scoring segments is produced as the output, with the guarantee

that some �xed number (usually one or two) of segments is truly coding. It should be noted

that this formulation of the protein-coding recognition problem is stated here for the �rst time,

although some existing algorithms can be re-shaped for such predictions.

This algorithm was implemented as a module in the GREAT package and tested on 50 long

(10{30 thousand nucleotides) human DNA sequences. The �rst predicted segment was coding

in 96% cases, the �rst two segments contained a coding one in all cases. To have two coding

segments at a distance not less than a given one, it was su�cient to retain three segments in

86% cases and �ve segments in all cases but one. These results are comparable with the results

by GRAIL [6], a neural network using many complicated statistical parameters.

2 Algorithm

Let S be a set of candidate genes (exon chains), and let Sb � S be a subset of genes containing

nucleotide b. Each gene p 2 S is assigned a statistics-based weight R(p) (see below). Score of

nucleotide b is computed as

U(b) =
X

p2Sb

exp(cR(p));



where c is a normalizing constant. Score of a segment B = b
1
: : : bk is de�ned as the average

weight of the constituting nucleotides

W (B) =
1

k

kX

i=1

U(bi):

Segment is called locally optimal if its weight is greater than the weights of all segments closer to

it than by some �xed distance. The set of locally optimal segments is output as the prediction.

Note that these de�nitions do not depend on the choice of the gene weights R. If R is

additive, S can be the set of all genes on the given sequence, and then nucleotide weights can

be computed by the dynamic programming algorithm for computation of the partition function

[5]. If R is not additive, U cannot be computed e�ectively, and the set S should be reduced.

Here we use the Pareto set P of genes, guaranteed to contain the optimal gene for any weight

function satisfying some natural conditions.

More exactly, let each candidate gene be described by a set of additive parametersW
1
; : : : ; Wm.

We say that a gene p dominates over a gene r (denoted p � r) if Wj(p) � Wj(r) for all

j = 1; : : : ;m and at least one inequality is strict. The Pareto-optimal set P contains all genes

such that

� for any gene r =2 P there exists a dominating gene p 2 P : p � r;

� any two genes p
1
; p

2
2 P are incomparable: neither p

1
� p

2
, nor p

2
� p

1
.

The Pareto set can be constructed by the vector dynamic programming algorithm described

in [4], [3]. It is simple to demonstrate [4] that for any function R(W
1
; : : : ;Wm) monotonically

increasing on its variables the Pareto-optimal set P contains an optimal gene, and that it does

not contain \unnecessary" genes, that is, for any gene p 2 P there exists a function R, for

which it is optimal.

Thus, to compute nucleotide weights U we use only genes from the Pareto-optimal set. We

use the following gene parameters: length L (in codons), number of exons N , coding potential

C, total weights of donor and acceptor sites D and A respectively.

The coding potential was de�ned as follows. Let f(abc) be the frequency of the codon abc

in the learning set. Codon weight is de�ned as

w(abc) = 100
log f(abc)� log f

min

log f
max

� log f
min

;

where f
max

and f
min

are the frequencies of the most frequent (resp. most rare) codons in the

learning set. The coding potential of a gene a
1
b
1
c
1
: : : aLbLcL consisting of L codons is de�ned

as

C(a
1
b
1
c
1
: : : aLbLcL) =

LX

i=1

w(aibici):

We will need also the average weight of codons in the learning set �C and the standard deviation

�C.

To de�ne site weights, consider learning sets of splicing sites aligned by the exon-intron

boundaries (donor and acceptor sites are considered separately). Let n(b; i) be the frequency



of codon b in alignment position i, and let n�(i) be the frequency of the consensus nucleotide,

so that n�(i) = maxb n(b; i). Weight of a site b
1
: : : bK is de�ned as

s(b
1
: : : bK) =

KX

i=1

n(bi; i) + 0:5

n�(i) + 0:5
:

For a gene consisting of N exons D is the total weight of its N � 1 donor sites, A is the total

weight of N � 1 acceptor sites. The average weight of donor (acceptor) sites in the learning set

is denoted by �D (resp. �A), the standard deviations are denoted by �D and �A respectively.

Finally, the gene weight is computed as

R =
D � (N � 1)�D

(N � 1)�D
+
A� (N � 1)�A

(N � 1)�A
+
C � L�C

L1=2�C
:

3 Testing

3.1 Implementation

The algorithm has been implemented as a module in the GREAT package and is available from

the authors by e-mail.

3.2 Test set

The test set consisted of 50 human sequences of length 10{30 thousands of nucleotides, each

containing not more than one gene. All sequences from GenBank (as of Spring 1996) satisfying

these conditions were considered. Alternatively spliced, incomplete,single exon genes and genes

with abnormal splicing sites were not excluded.

3.3 Parameters and procedures

The parameters (codon frequencies and positional nucleotide frequencies in splicing sites) were

taken from [3]. Each sequence was divided into overlapping fragments of length 4 thousand

nucleotides. After prediction of coding segments (independently for each sequence fragment),

the fragments were ordered by decrease of maxR and fragments with maxR lower that some

�xed threshold were deleted. Segments of length 30 nucleotides at the minimum distance 70

nucleotides were predicted. We retained the best and second best segments for each fragment

in the obtained order. Partially coding segments were considered as false predictions.

3.4 Benchmarking

The algorithm was compared with the GRAIL e-mail server [6] in the following way. The

same sequences were submitted to GRAIL II. The predicted exons were ordered by decrease

of scores, and the best segments were taken from the best (highest scoring) exon, the second

best exon, an so on. Since GRAIL produces many ties, results were summarized in two ways.

The optimistic estimate resolved all ties in favor of GRAIL (that is, if a true exon and a falsely

predicted exon had the same scores, the true exon was assigned higher rank), the pessimistic

estimate resolved all ties against GRAIL.



(a) GREAT

| 1 2 3 4 5 >5 impossible

---+------------------------------------------------------

1 | 47 3 0 0 0 0 0

2 | -- 34 9 4 2 0 1

(b) GRAIL - optimistic resolution of ties

| 1 2 3 4 5 >5 impossible

---+------------------------------------------------------

1 | 47 3 0 0 0 0 0

2 | -- 45 5 0 0 0 0

(c) GRAIL - pessimistic resolution of ties

| 1 2 3 4 5 >5 impossible

---+------------------------------------------------------

1 | 36 8 5 0 0 1 0

2 | -- 32 11 4 2 1 0

Figure 1: Prediction results. The values in the cells show the number of candidate segments

that should be considered in order to have the given number of coding segments (1 or 2).

3.5 Results

The overall results of testing are given in the table. If only one coding segment was needed,

in 47 cases out of 50 the highest scoring segment was su�cient; the two best segments were

su�cient in all cases. To have two coding segments, one had to consider 3 candidate segments

in 43 cases, and 5 segments in 49 cases.

GRAIL results were slightly better than ours for the optimistic resolution of ties, and much

worse for the pessimistic resolution. Thus the GREAT performance was at least comparable

to that of GRAIL.

4 Discussion

The results of demonstrate that the algorithm reliably (with high speci�city) �nds coding

segments in human DNA. With the probability close to 100% the output contains a given

number of coding segments among very few candidates. It should be noted that the testing

was deliberately performed in hard conditions, since we considered long sequences and did not

exclude numerous anomalies.

Simplicity of the statistical base of the algorithm allows one to use it for analysis of less

studied genomes when large learning sets are unavailable. Preliminary results demonstrate that

the quality of recognition of Drosophila genes is the same as for human genes. Currently we

are performing testing on plant and protist genes.



At the same time, combinatorial 
exibility of the algorithm makes it possible to speci�-

cally tune it for various experimental designs. In particular, similar ideas can be applied for

high sensitivity recognition, when loss of exons is less acceptable than overprediction (work in

preparation).

Acknowledgements

We are grateful to Dr. O. E. Evgrafov for discussion of experiments that initialized this work.

Some procedures in GREAT were written by L. I. Podolsky, M. N. Semionenkov and D. O.

Fomin.

This work was supported by grant 95/70 from Russian State Scienti�c Program "Human

Genome", grant 94-04-12330 from Russian Fund of Fundamental Research, and in part by grant

DE-FG-94ER61919 from DOE (USA).

References

[1] M. S. Gelfand, \Prediction of function in DNA sequence analysis," Journal of Computa-

tional Biology, Vol. 2, pp. 87{115, 1995.

[2] M. Burset, R. Guigo, \Evaluation of gene structure prediction programs," Genomics, Vol.

31, 1996 (in press).

[3] M. S. Gelfand, L. I. Podolsky, T. V. Astakhova, M. A. Roytberg, "Recognition of genes in

human DNA sequences," Journal of Computational Biology, Vol. 3, 1996 (in press).

[4] M. S. Gelfand, M. A. Roytberg, "Prediction of the exon-intron structure by a dynamic

programming approach," BioSystems, Vol. 30, pp. 173{182, 1993.

[5] A. V. Finkelstein, M. A. Roytberg, "Computation of biopolyers: A general approach to

di�erent problems," BioSystems, Vol. 30, pp. 173{182, 1993.

[6] Y. Xu, R. J. Mural, M. Shah, E. C. Uberbacher, "Recognizing exons in genomic sequence

using GRAIL II," Genetic Engineering: Principles and Methods, Vol. 16, pp. 241{253,

New York, Plenum Press, 1987.


