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Abstract

The alignment problem of DNA or protein sequences is very applicable and important

in various �elds of molecular biology. In this problem, the obtained optimal solution with

�xed parameters (gap penalties, weights for weighted multiple alignment problems, and so

on) is not always the biologically best alignment. Thus, it is required to vary parameters

and check the varying optimal alignments. The way to vary parameters has been studied

well on the problem of only two sequences [6, 7, 12, 13, 14, 15], but not in the multiple

alignment problem because of the di�culty of computing the optimal solution. This paper

presents techniques for parametric multiple alignment problem, and examines the features

of obtained alignments by parametric analysis on gap penalty and weight matrix through

experiments. These experiments reveal the importance of adopting appropriate parameter

values to obtain meaningful multiple alignments.

1 Introduction

The multiple alignment is a problem to obtain the alignment of multiple sequences with the
highest score based on some given scoring criterion between characters. This problem appears
in various �elds of molecular biology such as the prediction of three dimensional structures of
proteins and the inference of phylogenetic tree.

The method using dynamic programming (DP) is well-known for the alignment problems.
This method needs O(nd) time and space for d sequences of length at most n. This method can
be applied when n is not so large and d is 2 or 3, but for larger problems, it is impractical. The
A� algorithm is a well-known algorithm for the general optimization and search problems. This
algorithm can reduce the search space dramatically if a powerful estimator is used. Thus the
A� algorithm with upper bounding operation is proposed recently for computing the optimal
alignment of multiple sequences [8, 9].



In computing alignment, we set several parameters such as gap penalties, score matrices,
and so on, based on our experiences through experiments. But, the parameter which induces
the biologically best alignment is not always same in many cases. Hence we must check the
solutions which are induced by various parameters.

The parametric 2-alignment problem has been studied very well [6, 7, 12, 13, 14, 15]. They
did parametric analysis mainly on gap penalties. On the other hand, the parametric multiple
alignment problem in respect to gap penalties is also an important and applicable problem, but
has not been studied well yet mainly because of the computational di�culty of the problem.
Furthermore, in multiple alignment problem, new parameters which do not appear in the 2-
alignment problems are inherently introduced, and parametric problems for them should be
also investigated. A typical example is the weighted multiple alignment problem, which is a
generalized version of the simple sum-of-pairs multiple alignment problem [1, 4]. It has strong
relationship to phylogenetic tree. This problem does not arise in 2-alignment problem, but is
very important. In this weighted problem, we optimize sum of weighted pairwise scores, where
the weights are expressed in matrices which we call weight matrices.

In this paper, we �rst show the (enhanced) A� algorithm is applicable for the weighted
multiple alignment problem. We then review the techniques for parametric analysis, and pro-
pose new techniques for multiple alignments. As for the techniques, we introduce Eppstein
algorithm to examine all the optimal solutions for one �xed parameter, and upper bounding
technique for the parametric alignment. In most of previous works, they computed only one
optimal solution for one �xed parameter in parametric analysis. We enumerate all the optimal
solutions because the parametric analysis is the analysis of optimal solutions and we consider
we should examine all optimal solutions. Fortunately, it is reasonable to obtain with Eppstein
algorithm.

Then we present a parametric study on gap penalties using actual protein sequences. Fur-
thermore, we also illustrate a parametric analysis on weight matrices. Weighted problem is
considered only when the phylogenetic tree is given, but our approach enables more exible
study of the weighted multiple alignment problem. This problem is also studied using actual
protein sequences. These experiments show the importance and usefulness of the parametric
study in multiple alignment problem.

2 A� Algorithm for Weighted Multiple Alignment

The multiple alignment problem can be easily transformed to the shortest path problem on
some grid-like directed acyclic graph with no negative edges. Let Sk be the kth sequence of d
sequences to be aligned, and nk = O(n) be the length of Sk. Then suppose a directed acyclic
graph G = (V;E) such that V = f(x1; : : : ; xd)jxi = 0; 1; : : : ; nig and E = f(v; v + e)jv 2 V; e 2

[0;1]d; e 6= 0g. In this graph, a path from s = (0; : : : ; 0) to t = (n1; : : : ; nd) corresponds to an
alignment of the sequences.

In the alignment problem of two sequences, the length of an edge is de�ned from the
score table between characters, and the length of a path from s to t equals the score of the
corresponding alignment. Figure 1 shows an example of it. In the multiple alignment problem,
the sum of all the scores for alignments of pairwise sequences is generally used as the score.
Thus the score of the alignment equals the length of the corresponding path, de�ning length
of each edge as the sum of the lengths of the corresponding edges in the graphs of pairwise
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Figure 1: The graph for the alignment of two sequences ATGC and ACT. The s-t path in the bald
line represents the alignment of ATGC- and A--CT

alignments. This longest path problem can be easily transformed to the shortest path problem
by reversing the signs of the lengths [5, 8, 9]. From here, we discuss this transformed shortest
path problem.

The A� algorithm will not search the whole graph in �nding the shortest path if a good
estimate for the shortest path length from each vertex to t can be used. Ikeda and Imai [9]
show the following estimator is very useful in case d > 2. Let Gij be the corresponding graph
to the alignment of Si and Sj , vij be the corresponding vertex in Gij to v in G, and L�(u; v)
be the shortest path length from u to v. Then h(v) =

P
1�i<j�dL

�(uij; vij) can be used as a
powerful estimator for the multiple alignment problem. This estimator is easily be shown to be
dual feasible, i.e. l(u; v) + h(v) � h(u). Hence the A� algorithm can be applied as following.

1. For each of i and j (1 � i < j � d), apply DP to graph Gij from tij to calculate L
�(vij; tij)

for each vij in Vij.

2. Modify the length of edge (u; v) in G as follows, using h(v) above, and compute the
shortest path with Dijkstra method. Notice that this new edge length is non-negative.

l0(u; v) = l(u; v) + h(v)� h(u) (1)

Note that the time and space used for the DP in the step 1 is negligible, if d is large. This A�

algorithm can deal with aligning 5 to 6 normal sequences in reasonable time.
A vertex in the graph for the multiple alignment has 2d � 1 edges going out from it, and

the A� algorithm examines all the descendant vertices and keeps in a heap the information
about all of them. If an upper bound L+(s; t) for the s-t shortest path, which corresponds to
the lower bound of the score of the alignment, is given, the necessary space for the heap can
be reduced [8]: we can ignore w such that L�(s; v) + l(v;w) > L+(s; t), when we examine the
descendant vertices of v. If the necessary space for the heap is reduced, the computing time of
the A� algorithm will be also reduced. This is called the enhanced A� algorithm. Note that the
branch-and-bound techniques implemented in MSA program [5] is equivalent to this enhanced
A� algorithm.



The weighted (sum-of-pairs) multiple alignment problem [1, 4] is a generalization of the
simple multiple alignment problem described above. This version of the problem is often used
when the phylogenetic tree is given. In this problem, we optimize sum of weighted scores
of each pairwise sequence alignments: we multiply the score of the alignment of the ith and
the jth sequence by wij. We call (wij) a weight matrix. Computing the optimal solution
of this problem by the (enhanced) A� algorithm is rather easy: all we have to do is using
h(v) =

P
1�i<j�d

wij � L
�(uij; vij) as the estimator.

3 Parametric Multiple Alignment

In this section, we describe the techniques for parametric analysis of multiple sequence align-
ment problem.

3.1 Basic Techniques

In this subsection, we describe basic methods to check how the optimal solution varies as the
parameters such as gap penalties change. The easiest approach for this kind of problem is
to change the parameter little by little and check the optimal solution, but we cannot know
how little we should change the parameter. Recently the techniques for parametric analysis
are developed [6, 7, 12, 13, 14, 15]. In those previous works, they also did parametric analysis
which deal with more than one parameters, but algorithms for them are not so e�cient as the
one-parameter case and it will often be nonsense if the parameters are not related each other.
Thus we deal with only one parameter at one time in this paper.

We consider the case in which the score of some alignment Ai is expressed with parameter
p as follows:

si(p) = a(Ai) + b(Ai) � p (2)

Gap penalty satis�es this expression for example.
From here, we explain how to divide 1-parameter (1-dimensional) space to regions in which

the optimal alignments are always same. Let ai be a(Ai) and bi be b(Ai). Let pi and pj be
the values of the parameter which satis�es pi < pj and has di�erent optimal solutions. Let the
alignment Ai be the alignment with smallest value of b among the optimal alignments at p = pi
and Aj be the alignment with largest value of b among the optimal alignments at p = pj. Then

this two alignments Ai and Aj has the same score at p = pij = �
ai � aj

bi � bj
. If the optimal score

at p = pij equals to si(pij) = sj(pij), there are only two regions between pi and pj. Otherwise,
we can apply the same technique recursively (i.e. apply between pi and pij and between pij
and pj) to obtain such division. Figure 2 shows an example of this procedure.

Letting n be the number of regions which we want to obtain, we only have to compute the
optimal solutions 2n � 1 times. Thus we can e�ciently do parametric analysis in the case of
one parameter.

3.2 Eppstein Algorithm

In the previous subsection, the alignments with the largest or smallest value of b among the
optimal alignments at some �xed parameter are required. These can be easily obtained by
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Figure 2: An example of division of 1-parameter space. In this case, there are 4 regions between
p1 and p2.

some extension of DP [12, 13, 14, 15]. This technique can be applied also to the (enhanced)
A� algorithm, but the aim of the parametric analysis is to examine all the optimal solutions.
Accordingly, it is not preferable to ignore most optimal solutions if there are many. Fortunately,
a new e�cient algorithm for enumerating suboptimal solutions was recently proposed by Epp-
stein [3, 10, 11], which is known to be very useful for enumerating suboptimal solutions [10]. It
is also e�cient for enumeration of all the optimal solutions: the extra time of the enumeration
is linear to the output size.

Let �(u; v) for an edge (u; v) be l(u; v) +L�(s; u)�L�(s; v). This �(u; v) denotes how much
longer the path will be using the edge (u; v) than the optimal path by way of v, and therefore
this value is always non-negative. If an edge (u; v) is on the shortest path tree, �(u; v) is zero,
otherwise, it is called a sidetrack and �(u; v) may not be zero. If we go along an s-t path p

other than the shortest path, there must be sidetracks on the path, and we de�ne sidetrack(p)
as the nearest sidetrack from s within them.

Let (tail(p); head(p)) be sidetrack(p). Then we can suppose a heap, in which the parent of
a path p is a path which is same as p from head(p) to t, but go along the shortest path from
s to head(p) instead of using sidetrack(p). We de�ne this parent of p as parent(p) and we call
p a child of parent(p). The root of the heap is the shortest path, and all the paths from s to t

appear in the heap once. In this heap, p is �(sidetrack(p)) longer than parent(p).
The basic concept of the Eppstein algorithm is constructing a graph which represents 4-heap

modi�ed from this path heap. From this heap, we can obtain the k shortest paths in O(k) time,
or O(k log k) time in sorted form.

3.3 Upper Bounding Technique for Parametric Alignment

As we stated in the section 2, the A� algorithm will be more e�cient if some upper bounding
value for the optimal solution is given (it is called the enhanced A� algorithm). In the parametric
alignment problem, si(pij) = sj(pij) in the subsection 3.1 can be used as this upper bounding
value in computing the optimal alignments at p = pij.



4 Case Analysis and Experimental Results

In this section, we do parametric analysis of gap penalty and weight matrix. We also do
experiments on actual protein sequence groups.

Concerning the score matrix, we used the famous PAM-250 matrix based on [2]. As for gap
penalties, in the 2-alignment case, a�ne gap penalty is often used (i.e. penalty expressed as
a+ bx where x is the length of the gap). On the other hand, in multiple alignment problem,
to obtain the optimal alignment using the a�ne gap is very di�cult, though there are many
approximate algorithms which can deal with a�ne gap. Thus, we use linear gap penalty (i.e.
penalty expressed as bx where x is the length of the gap) in this experiment. In the experiments
for parametric weight matrix, we used �8 for gap penalty which is the minimum value in PAM-
250 matrix. All the experiments in this section were done on Sun Ultra 1 workstation with 128
Mbyte memory.

We used 6 sequences of EF-1� sequences for experiments. This is a group whose similarity
is very high and their lengths are about 430. Table 1 shows the sequences we used in the
experiments.

4.1 Parametric Gap Penalty

We did parametric analysis of gap penalty using the top d sequences in Table 1.
In general, the most popular gap penalty is the minimum value in the score matrix, which

is �8 in this PAM-250 case. We did parametric analysis for d-sequence alignment (2 � d � 6)
with gap penalty between �2 and �16.

Table 2 shows the result of the experiment. In Table 2, the �rst row of each entry of d
shows the boundaries of the regions, but several of the ends are not the boundaries: the ends
with � in #Max and #Min entry are not boundaries. The second row shows the number of
the optimal solutions at the value. The last two rows shows the number of optimal solutions
with largest/smallest value of b in the subsection 3.1. Thus, these values equal to the numbers
of the optimal solutions between the boundaries.

According to the table, it is observed that the intervals of the regions become smaller as the
penalty increases regardless of d. It also shows that there are not so much di�erence between
di�erent d's, which means we can do parametric analysis as easily as in the 2-alignment case.
The table also shows that there are more than 1 optimal solution in all cases in the experiments.

Table 1: EF-1� sequences used for the experiments

Sequences Pairwise Scores

Species Protein Length Met Tha Thc Sul Ent

Halobacterium marismortui (Hal) EF-TU 421 1329 1314 1221 1109 1099

Methanococcus vannielii (Met) EF-TU 428 1336 1247 1150 1176

Thermoplasma acidophilum(Tha) EF-1� 424 1311 1261 1233

Thermococcus celer (Thc) EF-1� 428 1132 1130

Sulfolobus acidocaldarius (Sul) EF-1� 435 1192

Entamoeba histolytica (Ent) EF-1� 430



Table 2: The result of the experiment on parametric gap penalty.

Gap penalty �16 �5 �3 �2:5 �2

d = 2 #Solutions 4 12 24 192 576

#Max - 8 16 8 32

#Min - 4 8 16 8

Gap penalty �16 �3:5 �3 �2:75 �2:5 �2:2 �2

d = 3 #Solutions 8 16 24 32 72 48 256

#Max - 8 16 16 16 32 96

#Min - 8 8 16 16 16 32

Gap penalty �16 �8 �3:83 �3:5 �2:5 �2:33 �2:25 �2

d = 4 #Solutions 16 32 32 32 32 48 160 4608

#Max - 16 16 16 16 32 128 384

#Min - 16 16 16 16 16 32 128

Gap penalty �16 �7:5 �4 �3:38 �3:17 �3 �2:88 �2:75 �2:5

d = 5 #Solutions 2 4 4 4 4 4 12 8 24

#Max - 2 2 2 2 2 4 4 4

#Min - 2 2 2 2 2 2 4 4

Gap penalty �16 �6:5 �4:5 �4 �3:5

d = 6 #Solutions 4 16 8 8 4

#Max - 4 4 4 -

#Min - 4 4 4 -

Figure 3 shows the number of visited nodes by A� algorithm in computing the all the
optimal alignments under various gap penalties. According to this �gure, the number of the
visited nodes increases drastically as the gap penalty increases especially when gap penalty is
larger than �4. This is the reason why we analyzed gap penalty only up to �2:5 or �3:5 when
d � 5: the required space was too large to compute when the gap penalty is around �2.

In general, the number of required space is large if the similarity among the group is low.
This means that if the number of visited nodes becomes too large, similarity may not have been
detected. Thus the gap penalty larger than �4 may be of no use.

4.2 Parametric Weight Matrix

Parametric analysis of weight matrix can be used for tuning parameters of a phylogenetic
tree. A weight matrix for aligning sequences whose phylogenetic tree is known can be made
if divergence between sequences are given [1]. But what should we do if the divergence are
ambiguous? In such case, parametric analysis between reasonable two weight matrices helps.

There are
(d� 2)(d+ 1)

2
parameters to change in the weight matrix, thus what we can do is

very limited simple analysis. We implemented a program to analyze how the optimal solutions
change as weight matrix changes linearly between two weight matrices.
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Figure 3: Number of visited nodes by A� algorithm under various gap penalties.

We did experiments between following two weight matrices of (wij) and (w
(16;n)

ij
):

wij =

(
0 i = j

1 i 6= j
w

(p;n)

ij
=

(
p � wij i = n or j = n

wij otherwise
(3)

In this equation, (wij) corresponds to the simple sum-of-pairs multiple alignment, and w
(p;n)

ij

increases the importance of nth sequence to p times as the simple sum-of-pairs multiple align-
ment. If biologically good alignment is discovered in the experiment, we can estimate the
importance of the sequence which was increased.

Table 3 shows experiment results using the 6 EF-1� sequences in Table 1. The �rst column
is the name of the sequence whose importance was increased. The �rst row of every entry shows

the value of p of w
(p;n)

ij
which are boundaries of regions except for several ends with - in #Max

and #Min entries. The second row shows the number of the optimal solutions and the other
two rows shows the number of the optimal solutions with largest/smallest b in the section 3.1.

In this experiment, we notice that the optimal solutions will change even when only p = 1:33
in some of the cases (cases of Tha and Ent). It means we should take more care of the weight
matrix. This experiment also show that there are more than 1 optimal solution in all the cases
in this experiment. In the experiment, the number of the regions are not too large to deal with
(6 to 10 in this experiment). This means this approach is very reasonable to take.



Table 3: The result of the experiment on parametric weight matrix.

Weight 1 1:33 3 3:17 4:5 4:75 5 6:57 16

Hal #Solutions 4 16 16 12 8 8 48 16 8

#Max - 4 8 4 4 4 8 8 -

#Min - 4 4 8 4 4 4 8 -

Weight 1 2:25 3 4:2 4:4 4:5 12 14:5 16

Met #Solutions 4 8 12 16 16 16 16 16 24

#Max - 4 8 8 8 8 8 8 16

#Min - 4 4 8 8 8 8 8 8

Weight 1 2:33 3 5:5 7:67 8 16

Tha #Solutions 4 8 8 8 8 16 4

#Max - 4 4 4 4 4 -

#Min - 4 4 4 4 4 -

Weight 1 1:8 3 4 5 5:33 6 10:33 12 14:44 16

Thc #Solutions 4 8 8 12 12 8 8 8 8 8 12

#Max - 4 4 2 4 4 4 4 4 4 8

#Min - 4 4 4 2 4 4 4 4 4 4

Weight 1 2 3 3:75 5 6 6:43 8 10:25 14 16

Sul #Solutions 4 12 8 8 12 16 16 16 16 16 8

#Max - 4 4 4 8 8 8 8 8 8 -

#Min - 4 4 4 4 8 8 8 8 8 -

Weight 1 1:33 1:5 3 3:66 5 6 10:33 13 16

Ent #Solutions 4 8 8 8 8 8 8 12 24 16

#Max - 4 4 4 4 4 4 8 16 -

#Min - 4 4 4 4 4 4 4 8 -

5 Concluding Remarks and Future Works

We introduced the concept of parametric analysis to multiple alignment problem. We also
demonstrated parametric experiments on gap penalties and weight matrix for multiple align-
ment problem. Using parametric weight matrix technique practically in such problems as
phylogenetic tree problems which are strongly related to weight matrix remains as one of fu-
ture works. Applying similar techniques to other optimization problems in genome science, or
doing parametric study of other parameters are also left as future works.
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