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Abstract

We are given a �nite set S of text strings and a pattern P over some �xed alphabet �.
The topic of this paper is the design of a data structure D(S) which supports approximate

multiple string searching queries e�ciently. Thereby, for a given upper bound k 2 Z+ on

the allowable distance, P = p1 � � � pm is said to appear approximately in a text T = t1 � � � tn,

m; n 2 Z+, if there exist positions u; v in T such that the edit distance between P and

tu � � � tv is at most k. Let N denote the sum of the lengths of all strings in S. We present

an algorithm that constructs the data structure D(S) in O(N) time and space. Afterwards,

an approximate multiple string search query can be answered in O(N) expected-time if the

allowable distance k is bounded above by O( m
logm). The method can be used to search large

nucleotide and amino acid sequence databases for similar sequences.

1 Introduction

Multiple string search is a classic topic within the �eld of algorithms and data structures,

and has recently gained great importance in computational biology. This is largely due to

the enormous advances in DNA sequencing technology [12]. The current release of GenBank

(GenBank Release 95.0, June 1996) alone contains 835,487 sequences of altogether more than

550 million nucleotide base pairs. The size of the sequences databases doubles every 2.5 years

[13]. Whenever a sequence investigator determines a new sequence, one of the �rst things he

must do is \to compare it with all available sequences to see if it resembles something already

known" [7]. This is the problem of searching for approximate occurrences of a new string among

all the known strings and we call it the approximate multiple string searching problem.

Typically, only a handful (if any) of the known sequences will contain an approximate

occurrence of the new sequence. Hence, it is undesirable to search through all known sequences



explicitly, and we would instead be willing to sacri�ce some preprocessing time on the set

of known sequences to make subsequent approximate searches faster. The contribution of

this paper is to propose a solution to this problem, namely a data structure that supports

approximate multiple string searches, together with its preprocessing and searching algorithms.

Before presenting the solution, let us de�ne the approximate multiple string searching prob-

lem more formally. We are given a �nite set S of strings; each string is a word over �� for

some �xed, �nite alphabet �. In order to perform approximate string searching with a query

string P = p1 � � � pm (the pattern) e�ciently, we are looking for a suitable data structure D(S)

for storing S. The operation that D(S) should support is the approximate string searching

query which returns the set of all strings in S in which P occurs approximately, together with

all substrings of S that are approximate occurrences of P . For a given upper bound k 2 Z+

on the allowable distance, string P is said to occur approximately in T = t1 � � � tn, m; n 2 Z
+,

pi; tj 2 � for 1 � i � m, and 1 � j � n, if there are positions u; v in T , 1 � u � v � n, such

that the distance between tu � � � tv and P is at most k. For our purpose, the distance is de�ned

to be the edit distance with unit cost; i.e., the distance between two strings is the minimum

number of insertions, deletions and changes of a letter that transforms one string into the other.

The approximate multiple string searching problem di�ers from the approximate string

matching problem (see, for example, [17, 20, 10, 4, 15, 16]), where all approximate occurrences

of a pattern string in a single text string are sought, quite considerably: our emphasis is on

providing a fast, selective �lter on all strings that leaves only few strings to be investigated

closely, in order to answer a query. Nevertheless, one will probably argue that there exist

two sublinear expected-time algorithms, namely Myers' algorithm [15] and Chang and Lawler's

algorithm [4], in the literature and one can use any of these two algorithms for the approximate

multiple string searching problem by simply concatenating all text strings in the database into a

single string. Myers' algorithm assumes that the length m of the pattern P satisfy m = logj�jN

where N denotes the sum of the lengths of all strings in the database S. It �rst builds an

index structure for the database S in O(N ) time and the index occupies O(N ) space. This is

comparable to our methods for building our index structure and for storing it. But deletion

or addition of a string of length r from or into Myers' index can take as much as O(N) time,

while one needs only O(r) time with our index structure. Myers' algorithm is termed sublinear

in the following sense: it takes O(k N pow(") logN) expected-time to answer a query where

" = k=m and pow(") is an increasing and concave function 1 that is 0 when " = 0. Thus Myers'

algorithm is superior to existing O(k N) algorithms only when " is small enough to guarantee

that pow(") < 1. Chang and Lawler's algorithm is purely scanning based, requiring only

O(m) working space while both Myers' algorithm and ours require a precomputed index which

occupies O(N) space. However, empirical comparisons have shown that this sublinear-expected

algorithms is NOT even competitive with an O(k n) expected-time algorithm [5]. The expected

running time of the sublinear algorithm is O((k logm)(n=m)) for k < m=(logm+O(1)). When

k is as large as O(m= logm), the expected running time of this algorithm is actually linear

(i.e., O(n)). As a matter of fact, experimental results have shown that the actual running

time of this algorithm is as much as 160 (k logj�jm (n=m)) [5]. Furthermore, each time when

a new query string (pattern) is given, Chang and Lawler's algorithm needs to scan the whole

database which is usually stored in a slow secondary storage device and therefore takes a lot

1
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of time; our index structure needs to be constructed only once and although it may need to

be stored on a secondary storage device as well, our algorithm needs only to read a very small

part of the tree-like index structure to answer a query. Consequently, neither Myers' nor Chang

and Lawler's approximate single string matching algorithm is appropriate for the approximate

multiple string searching problem.

In previous methods for the approximate multiple string searching problem, the pattern

is examined against each of the texts in S, thereby wasting a lot of time with texts that are

arbitrarily far from the pattern. In a �rst approach, we have shown how to use geometric

clustering methods to focus on texts that are near to the pattern [3]. This approach follows a

di�erent approach: texts in S are clustered according to a non-geometric criterion in such a way

that the �lter step delivers candidate texts that are likely to match the pattern approximately.

In addition, we show how candidates can be tested e�ciently.

The next section illustrate the basic idea of our approach. Section 3 presents the details of

the proposed data structure, including an algorithm for constructing it, and Section 4 describes

the query algorithm. Finally, Section 5 concludes the paper.

2 The basic idea

Let k be the given upper bound on the edit distance in the search for approximate occurrences,

and let P = p1 � � � pm be the pattern to be searched for. We partition P into k + 1 substrings

called blocks, denoted by B1; : : : ; Bk+1, each of length r = m

k+1
(assume that k + 1 divides m

to simplify the presentation), where Bj = p(j�1)r+1p(j�1)r+2 : : : pjr, for 1 � j � k + 1. Then it

is obvious that if P matches a substring of a text T = t1t2 : : : tn 2 S approximately with edit

distance at most k, then at least one of the k+1 blocks B1; : : : ; Bk+1 matches a substring of T

exactly. This observation has been used previously in approximate string matching algorithms

[2, 22, 16].

To make use of this fact for approximate multiple string searching, we store in a data

structure information on all substrings of length r of all strings in S. More precisely, let us

call any string from �r, i.e., any string of length r, a r-gram. Let W1; : : : ; Wl be the set of

all r-grams occurring as substrings in some string in S. For each Wi, 1 � i � l, we compute

a set of \home" strings of Wi, i.e., the set of strings in S that contain Wi as a substring:

h(Wi) = fT 2 SjWi � Tg where � denotes the substring relation between strings.

To �nd all approximate occurrences of P in S, it is now su�cient to examine all strings

A =
Sk+1
i=1 h(Bi). No other strings can belong to the answer of the query, and the number of

strings in A is expected to be much smaller than the number of strings in S.

3 The data structure

For ease of description, let us interpret an r-gram as a positive integer in base-j�j-notation. 2

That is, for � = fa0; a1; : : : ; ae�1g, e = j�j, a string X = x1x2 : : : xr is interpreted as some

2An e�cient way to convert a string into a positive integer is give by Karp and Rabin [8].



value f (X):

f(X) =
rX

i=1

�xie
r�i (1)

where �xi = j if xi = aj, 1 � i � r. Note that f is a bijection, i.e., f(X) = f(X 0) if and

only if X = X 0. when \scanning" a string T 2 S, i.e., when considering r-grams in T that

appear in adjacent positions, the associated integers can be computed quickly. More precisely,

for Vi = titi+1 : : : ti+r�1, 1 � i � n� r + 1, we have:

f(Vi+1) = (f (Vi)� �tie
r�1)e+ �ti+r (2)

By �rst computing f(V1) =
Pr

i=1
�tie

r�i and then computing f(Vj) using (2) for j = 2; : : : ; n�

r + 1, all associated integers for r-grams in T can be computed in time O(n), assuming that

multiplications, additions, and subtractions of integers take constant time each, and that the

values of e1; e2; : : : ; er can be stored in atable. Let us now de�ne classes of strings in S,

according to the r-grams they contain. For an r-gram W , let

H(W ) = f(T; i)jT = t1 � � � tn 2 S ^ f(ti � � � ti+r�1) = f(W ); 1 � i � n� r + 1g (3)

be the set of home strings of W , augmented by the positions of the occurrences of W .

3.1 Computing home strings of r-grams

The set of home strings, of all possible r-grams W1; : : : ; Wl in S, can be computed by scanning

all strings in S and keeping track of the r-grams encountered. For the r-gram Wj encountered

at position i in string T 2 S, we add the element (T; i) to the set H(Wj). Apart from the

time to access H(Wj) for a given j, and provided that the addition of an element to a set is

possible in constant time (which is true, e.g., in a linked list), the computation of all sets of

home strings of r-grams takes time O(N), where N is the sum of the lengths of all strings in S.

3.2 Maintaining the home sets

To access H(Wj) for a given j, any of a number of established techniques can be applied.

One choice of a data structure for maintaining home sets is a search tree. Due to the high

expected number of r-grams, an external search tree, such as B+-tree [6], should be used. The

leaves of the B+-tree contain the entries of home sets, in the form of pairs (T; i), consisting of a

pointer to a string and an integer, ordered according to H(Wj) and interspersed with separation

information between di�erent H(Wj). Any access or addition of an entry will then cost time

O(logN), totaling to O(N logN) for preprocessing.

Another choice of a data structure is a digital tree (trie), where the digits are letters from �.

The trie has height r, and each node is associated with the substring that can be read o� the

edge labels on the path from the root to the node. Then, each leaf corresponds to an r-gramW

and points to H(W ). In this structure, any access or addition of an entry costs time at most

O(r), totaling to O(r �N) time for preprocessing.

A more careful investigation shows that a data structure similar to su�x trees [21, 11, 19]

can be constructed in O(N) time and space thereby keeping O(r) update time for an access or

an addition.

We are in the process of implementing and experimentally comparing the three data struc-

tures to see which one is more useful for nucleotide and amino acid sequence databases.



3.3 The expected selectivity of home sets

The number of di�erent r-grams occurring in a data base of s di�erent sequences of average

length n is bounded from above by s � (n� r + 1). For GenBank Release 95, June 1996, with

s = 835; 487, n = 660, we have for r = 64 a bound of 498; 785; 739. Note that this is nearly

zero compared to er (with e = 4 for DNA sequences).

If we assume for the moment, that P and T are random strings of length m and n respec-

tively, the probability that a r-gram of P occurs exactly in T is

1�

�
1�

1

er

�n�r+1

(4)

Therefore, the probability that at least one of the k + 1 r-grams of P occurs exactly in T is

1 �

�
1�

1

er

�(k+1)�(n�r+1)

(5)

For a random query r-gram, the probability to occur in the database is therefore very small.

Hence, the selectivity of the home sets method should be very good. Since DNA sequence

data will not be rigorously random, the practical selectivity still needs to be determined; �rst

experimental results show that the home sets method will still be very selective.

4 The searching algorithm

An obvious way to search for all approximate occurrences of a pattern P = p1 � � � pm with edit

distance at most k is to inspect all home sets of the k + 1 r-grams of P , as they are given in

the data structure described in the previous section. In order to give this searching process a

favourable order, we do not search each candidate text string T immediately after retrieving it,

but we instead sort the set of pairs (T; i) according to the T -components. More precisely, we

keep track of a set of candidate triples

C(P ) = f(T; i; j)j(T; i) 2 H(Bj); 1 � j � k + 1g (6)

indicating the text strings T matching the j-th block Bj = p(j�1)r+1p(j�1)r+2 : : : pj r of P exactly

at position i. The triples in C(P ) are sorted according to T . For any (T; i; j) 2 C(P ), the edit

distance d of a substring tu : : : tv, with u � i^ i+ r� 1 � v, to the pattern P , is bounded from

above by the fact that block j of P occurs exactly in tu : : : tv. More precisely,

d(P; tu : : : tv) � d(p1 : : : p(j�1)r; tu : : : ti�1) + d(pjr+1 : : : pm; ti+r : : : tv)

 �d(T; i; j; u; v):
(7)

Therefore, for any entry (T; i; j) 2 C(P ), any pair (u; v) for which �d(T; i; j; u; v) � k

identi�es an approximate occurrence of P in T . Since, on the other hand, each approximate

occurrence of P in T must contain a block of P that matches in T exactly, the answer to an

approximate searching query is the set of occurrences with �d(T; i; j; u; v) � k. To �nd the

corresponding u; v for a given (T; i; j) 2 C(P ), it is su�cient to look k positions around, in

the following sense: it su�ces to consider u � � and v � � where

� =

(
1 if i � (j � 1)r � k � 1

i� (j � 1)r � k otherwise
(8)



and

� =

(
n if m+ i� (j � 1)r � 1 + k � n

m+ i� (j � 1)r � 1 + k otherwise
(9)

Furthermore, if (j�1)r+1 > i+k or (j�1)r+1 < m�n+ i�k, then we can immediately

decide that there exists no pair u; v with �d(T; i; j; u; v) � k. Whenever u; v might exist for

(T; i; j), we start the dynamic programming algorithm for distance computation (see, e.g., [18])

both at the left end of block j in T , advancing towards the left, and at the right end of block

j in T , advancing towards the right. We therefore need at most (j � 1)r((j � 1)r + k) and

(m�jr)(m�jr+k) operations, respectively. In the worst case, we need (m�r)(m�r+k)+4k2 <

m2+km+4k2 operations to implicitly identify all pairs u; v with �d(T; i; j; u; v) � k. The pairs

can be made explicit by adding the distances of all combinations of u and v to the dynamic

programming matrix, and then extracting all pairs of the solution.

A more detailed look at the selectivity of the home sets algorithm shows that few strings will

need to be investigated in a query with a random string. If both T and P are random strings,

the expected number of triples (T; i; j) 2 C(P ) is the number of blocks times the number of

r-gram positions times the probability of r-gram equality:

(k + 1)(n� r + 1)

er
<

(k + 1)n

er
(10)

Therefore, the expected time needed to �nd all pairs u; v with �d(T; i; j; u; v) � k is less

than

(k + 1)n

er
(m2 + km+ 4k2) (11)

This time is linear in the length of T , if (k+1)n

er
(m2 + km + 4k2) < cn for some constant c.

Since, k � m � 1, we get the requirement that nm

er
(6m2 � 9m + 4) < cn. Since r = m

k+1
, this

yields:

k �
m

log m(6m2�9m+4)

c

� 1 (12)

showing that the maximum allowable value for k is O( m

logm
), if we desire that the expected time

for examining T agains P be linear in the length of T . This bound is quite pessimistic, because

we could use a faster O(kn)-time algorithm (see, e.g., [9, 14, 20]) instead of the time-consuming

dynamic programming algorithm to identify the pairs u; v satisfying �d(T; i; j; u; v) � k. In

total, we get an expected time of O(N ) for �nding all approximate occurrences of a pattern P

in a set of text strings whose sum of lengths is N .

5 Concluding remarks

A primary motivation for this paper was to be able to e�ciently search large genetic sequence

databases for sequence homologies. Given a set S of text strings, our data structure can be

constructed in O(N) time and space where N denotes the sum of the lengths of the strings in S.

With this data structure, an approximate searching query can be answered in O(N) expected

time.



Our work presented in this paper is still in its preliminary stage. It remains to be seen what

the expected run time will be for real biological sequences, such as the data in GenBank and

the data in Brookhaven's Protein Data Bank (PDB) as we understand that the DNA or protein

sequences are not completely random strings. We should also be able to distinguish biological

signi�cant relationships from chance matches found by our algorithm. An implementation of

our method and performance experiments are currently being performed.

Also, we note that the idea of this paper is similar to the essential idea behind a heuris-

tic sequence comparison tool, BLAST [1], now in popular use for protein database searches,

although BLAST is a local similarity search algorithm and ours is a global similarity search

algorithm. BLAST consists of three stages, namely,

1. for each word W of length w of the query sequence (the pattern), compute a list of words

that score at least A when compared to word W ;

2. search the database for hits (i.e., subsequences of the database that score at least B when

compared to some word in the lists);

3. extend the hits in order to �nd subsequences of the database that score at least C when

compared to some subsequence of the query sequence.

Interested reader is referred to [1] for more information on BLAST.
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