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Abstract

This paper presents a method for clustering a large and mixed set of uncharacter-
ized sequences provided by genome projects. As the measure of the clustering, we use a
fast approximation of sequence similarity (FASTA score). However, in the case to detect
similarity between two sequences that are much diverged in evolutionary process, FASTA
sometimes underestimates the similarity compared to the rigorous Smith-Waterman al-
gorithm. Also the distance derived from the similarity score may not be metric since the
triangle inequality may not hold when the sequences have multi-domain structure. To cope
with these problems, we introduce a new graph structure called p-quasi complete graph for
describing a cluster of sequences with a con�dence measure. We prove that a restricted
version of the p-quasi complete graph problem (given a positive integer k, whether a graph
contains a 0.5-quasi complete subgraph of which size � k or not) is NP-complete. Thus
we present the outline of an approximation algorithm for clustering a set of sequences
into subsets corresponding to p-quasi complete graphs. The e�ectiveness of our method is
demonstrated by the result of clustering Escherichia coli protein sequences by our method.

1 Introduction

As the result of genome projects on several organisms, a large number of molecular sequences
have been available to scienti�c research community. Especially in some organisms, their com-
plete nucleotide sequences are available and the protein sequences encoded in their genomes
have been analyzed. It is recognized as one of the important issues to predict the functions of
uncharacterized protein sequences.

For this purpose, various sequence comparison methods [1, 2, 3, 4] have been devised to
explore similarities among characterized and uncharacterized protein sequences. Also multiple
sequence alignment methods (e.g., [5]) are often used to reveal multiple similarity relationships
and the conserved regions among their sequences.



By these methods, however, it is rather di�cult to examine diverged relationships among
a large mixed set of uncharacterized sequences which genome projects provide at a time. For
example, in a mixed set of sequences, even if the whole sequences are not similar to each other,
there may exist regional similarities among the partial fragments of their sequences. It gives
very complicated structure of sequence similarities. We will discuss about this in Section 2.2.

We propose a clustering method of a mixed set of sequences based on their pairwise similar-
ities. We formulate this problem as a graph covering problem by connected subgraphs where
vertices and edges of the graph denote sequences and similarity between sequences, respectively.

A similar approach to clustering sequences is proposed [6]. This method provides a bird's-eye
view of similarity relationships between large numbers of proteins with the aid of single-linkage
clustering and graphical/numerical representation; whereas, our method does not intend to do
single-linkage clustering but explores groups of sequences tightly related to each other with
sequence similarity.

2 Sequence Similarity

2.1 Approximation to similarity score

Several scoring systems on sequence similarity have been proposed. Two types of them have
been widely used; one is based on the dynamic programming method [1, 2] and the other is
based on the statistical signi�cance [4]. We took the former (especially the score by the Smith-
Waterman algorithm [2]) as the measure of sequence similarity since it is useful for revealing
regional similarities among the partial fragments of sequences.

The computational cost of the Smith-Waterman algorithm is, however, rather high for
computing every pair of given sequences. Thus we took the approximate scores computed by
the FASTA program [3]. According to the document in the program package [7], the FASTA
program is about 50-times faster than the SSEARCH program that is an implementation of
the Smith-Waterman algorithm in the same program package.

Figure 1 shows the relationship between similarity scores computed by FASTA and SSEARCH
for the same pairs of sequences. Where the sequence similarity is high (approximately greater
than 100), FASTA provides a good approximation for the SSEARCH score. Otherwise, the
FASTA score is sometimes apart from the SSEARCH score. Also in all cases, the FASTA score
is not greater than the SSEARCH score. Thus, we consider the FASTA score is reliable only
when it is higher than a threshold value (say, 100).

2.2 Distance from similarity score

Clustering methods generally utilize some kind of distance among data sets. According to a
review [8], given a set of sequences, the distance between any two sequences i and j can be
formulated using the similarity between i and j as follows:

d(i; j) = � ln snorm(i; j); (1)

where d(i; j), ln and snorm(i; j) denote the distance between i and j, the natural logarithm and
the normalized distance between i and j such that 0 � snorm(i; j) � 1 and snorm(i; i) = 1,
respectively. From the score computed by FASTA (or SSEARCH), snorm(i; j) can be approxi-
mated as follows:

snorm(i; j) '
sdp(i; j)

l(i; j) � w
; (2)
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Figure 1: The relationship between similarity scores computed by FASTA and SSEARCH
(Smith-Waterman score).

where sdp(i; j), l(i; j) and w denote the similarity score of FASTA (or SSEARCH) between
sequence i and j, the length of the regions aligned by the dynamic programming method and
the score when two identical characters (DNA bases or amino acid residues) are matched with
each other. The value of w depends on the distribution of characters in the alignment of i and
j and the scoring matrix such as PAM, BLOSUM, etc.

Several clustering methods based on pairwise distances of data have been proposed. Most
of these methods assume that the following two conditions hold on the distance metric.

(1) d(i; j) = d(j; i) � 0, for all i; j ,
(2) d(i; j) � d(i; k) + d(k; j) � 0, for all i; j; k (triangle inequality).

Sequence similarity, however, forms multi-domain structure in some cases [6]. Figure 2
shows an example of multi-domain structure among protein sequences Ada, RhaS and Ogt in
Escherichia coli. In this example, the above condition (1) holds but the condition (2) does
not hold since d(RhaS;Ogt) > d(RhaS;Ada) + d(Ada;Ogt). According to SWISS-PROT Rel.
33.0 [10], Ada is a bifunctional protein whose N-terminal part functions as a transcription
activator and C-terminal part functions as a methyltransferase. RhaS and Ogt function as a
transcription activator and as a methyltransferase, respectively. The multi-domain structure
among these proteins re
ects the bifunctionality of Ada. In such cases, we cannot use the
distance-based clustering methods, such as UPGMA (the unweighted pair-group method with
arithmetic mean) [9]. The approach we used is described in Section 3.

3 Clustering Method

3.1 p-quasi complete graph

As described in Section 2, if we use a fast approximation of similarity score (such as FASTA
score), every score is not always reliable especially when the similarity between sequences is
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Figure 2: An example of multi-domain structure of protein sequences in Escherichia coli and
the relationship between their similarity scores and distances.

low (typically less than 100). Also the distance derived from the score may not be metric since
the triangle inequality may not hold.

To cope with these issues, we took an approach to graph covering method. The outline of
our method is as follows:

(1) Protein sequences are regard as the vertices of a graph. Given approximate similarity
scores among the sequences and a threshold value for the lowest reliable score, draw
edges between any pair of vertices only if the score between them is higher than the
threshold.

(2) Search for a subgraph composed of vertices connected to each other in a ratio of at least
a given value. Repeat to �nd such subgraphs so that the whole graph is covered by
these subgraphs. The goal of this method is to �nd the minimum cover by a set of the
subgraphs.

To formulate the above, we introduce a new graph structure called p-quasi complete graph.

De�nition 1 p-quasi complete graph G = (V;E) is a graph such that deg(v) � dp(jV j � 1)e ;
for all v 2 V; where deg(v), p and jV j denote the degree of a vertex v, connectivity ratio of G
(0:5 � p � 1) and the number of all vertices in V , respectively.

Clearly a 1-quasi complete graph (p-quasi complete graph such that p = 1) is a complete
graph. Thus the connectivity ratio p means how close to a complete graph. Figure 3 shows an
example of p-quasi complete graph such that p = 0:5 and jV j = 8.

On p-quasi complete graphs, the following theorem holds.

Theorem 1 Every p-quasi complete graph is connected.

Proof: Assume a p-quasi complete graph G = (V;E) is not connected. Then there exists a
partition so that it divides G into two subgraphs (G1 = (V1; E1) and G2 = (V2; E2)) and no
edge exists between G1 and G2.

Here we can assume jV1j � jV2j without loss of generality. So jV1j � bjV j=2c holds. Here,
in general, the degree of any vertex v 2 V1 is jV1j � 1 or less. Thus,

deg(v) � bjV j=2c � 1; (3)



Figure 3: An example of p-quasi complete graph (p = 0:5; jV j = 8 and the degree of every
vertex � d0:5 � (8� 1)e = 4).

where deg(v) denotes the degree of v.
From the de�nition of p-quasi complete graph,

deg(v) � d0:5 � (jV j � 1)e : (4)

Here Eqs. (3) and (4) contradict each other.

A number of methods on graph decomposition based on the connetivity among vertices
have been presented. For example, Kortsarz and Peleg concerns the dense subgraph problem,
which is the problem of �nding the densest subgraph of size k with maximum number of edges
in a given graph [11]. On the other hand, our approach does not intend to �nd the densest
subgraph but focuses on �nding subgraphs that are denser than a given connectivity ratio.

3.2 NP-completeness on the p-quasi complete graph problem

In this section, we analyze the computational cost to �nd a p-quasi complete subgraph in a
given graph. Before the analysis, we de�ne some problems. The following discussion is based
on the Garey and Johnson's book [12].

De�nition 2 (RESTRICTED CLIQUE)
INSTANCE: A graph G = (V; E) and a positive integer k (bjV j=2c+ 1 � k � jV j).
QUESTION: Does G contain a clique of size k or more, that is, a subset V 0 � V such that
jV 0j � k and every two vertices in jV 0j are adjacent by an edge in E?

The RESTRICTED CLIQUE problem is just a restricted version of the CLIQUE problem
such that k � bjV j=2c + 1. Since it is proved that the CLIQUE problem is NP-complete [13],
it is easy to prove that the RESTRICTED CLIQUE problem is also NP-complete.

De�nition 3 (RESTRICTED 0.5-QUASI COMPLETE GRAPH)
INSTANCE: A graph G = (V; E) and a positive integer k (bjV j=2c+ 1 � k � jV j).
QUESTION: Does G contain a 0.5-quasi complete subgraph of size k or more, that is, a subset

V 0 � V such that jV 0j � k and the degree of every vertex in V 0 is at least d0:5 � (jV 0j � 1)e?

The RESTRICTED 0.5-QUASI COMPLETE GRAPH is also a restricted version of a gen-
eral problem such that k � bjV j=2c + 1. The NP-completeness of the RESTRICTED 0.5-
QUASI COMPLETE GRAPH problem can be proved by transforming this problem to the
RESTRICTED CLIQUE problem.

Theorem 2 The RESTRICTED 0.5-QUASI COMPLETE GRAPH problem is NP-complete.
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Figure 4: An example of transformation from an instance of the RESTRICTED CLIQUE
problem to the corresponding instance of the RESTRICTED 0.5-QUASI COMPLETE GRAPH
problem.

Proof: Given a subset V 0 � V , it can be decided within polynomial time whether V 0 satis�es
the condition described in De�nition 3. Thus the RESTRICTED 0.5-QUASI COMPLETE
GRAPH problem belongs to NP.

We transform the RESTRICTED CLIQUE problem to the RESTRICTED 0.5-QUASI
COMPLETEGRAPH problem. LetG1 = (V1; E1) and k1 be any instance of the RESTRICTED
CLIQUE problem. By the following transformation, the instance of the RESTRICTED CLIQUE
problem can be transformed to an instance (a graph G2 = (V2; E2) and a positive integer k2)
of the RESTRICTED 0.5-QUASI COMPLETE GRAPH problem (see Figure 4).

Transformation 1
i) Double every vertex vi 2 V1 to two vertices (say, ai; bi 2 V2). Let A and B be a set of ai and
a set of bi, respectively. Here jAj = jBj = jV1j and jV2j = jAj+ jBj = 2jV1j.
ii) Let e(vi; vj) denote an edge 2 E1 between two vertices vi; vj 2 V1. Double every edge
e(vi; vj) 2 E1 to two edges e(ai; aj); e(bi; bj) 2 E2. Also construct edges e(ai; bi) (1 � i � jV2j=2).
iii) Set k2 is 2k1.

This transformation can be carried out in polynomial time.
Then we shall prove that the RESTRICTED CLIQUE problem has a yes-instance if and

only if the transformed RESTRICTED 0.5-QUASI COMPLETE GRAPH problem has a yes-
instance.

Case 1: An instance of the RESTRICTED CLIQUE problem (a graph (V1; E1) and a positive
integer k1) is a yes-instance.

In this case, there exists a clique (V 0

1
; E 0

1
) of size � k1 (for example, V 0

1
= fv2; v3; v4g and

E 0

1
= fe(v2; v3); e(v3; v4); e(v2; v4)g in Figure 4).
According to Transformation 1, we transform (V1; E1) to (V2; E2) and k1 to k2. By this

transformation, we obtain a subgraph (V 0

2
; E 0

2
) � (V2; E2) corresponding to (V 0

1
; E0

1
) (e.g. V 0

2
=

fa2; a3; a4; b2; b3; b4g and E 0

2
= fe(a2; a3), e(a3; a4), e(a2; a4), e(b2; b3), e(b3; b4), e(b2; b4), e(a2; b2),

e(a3; b3), e(a4; b4)g in Figure 4).
Since the degree of any vertex v 2 V 0

2
is always the degree of any vertex in clique V 0

1
plus 1

(for edge e(ai; bi)),

deg(v) = (jV 0

1
j � 1) + 1 = jV 0

1
j =

jV 0

2
j

2
� d0:5 � (jV 0

2
j � 1)e :

Also jV 0

2
j = 2jV 0

1
j � 2k1 = k2. Thus the subgraph (V 0

2
; E 0

2
) is a 0.5-quasi complete graph of size

� k2. Hence the transformed RESTRICTED 0.5-QUASI COMPLETE GRAPH problem has
a yes-instance.



Case 2: An instance of the RESTRICTED 0.5-QUASI COMPLETE GRAPH problem (a graph
(V2; E2) and a positive integer k2), which is transformed from an instance of the RESTRICTED
CLIQUE problem, is a yes-instance.

In this case, there exists a 0.5-quasi complete subgraph (V 0

2
; E0

2
) of size � k2 (bjV2j=2c+1 �

k2 � jV2j). By Transformation 1, jV2j can be divided into two subsets A and B such that
V2 = A[B, A \B = � and jAj = jBj where � denotes an empty set. Thus jAj = jBj = jV2j=2.
Since jV 0

2
j � bjV2j=2c+ 1 = jAj+ 1 = jBj+ 1, V 0

2
has at least one vertex from both A and B.

Thus V 0

2
can be formulated as follows:

V 0

2
= A0 [B0 such that A0 � A; jA0j � 1; B 0 � B; jB0j � 1; jA0j+ jB0j = jV 0

2
j:

Since (V 0

2
; E0

2
) is a 0.5-quasi complete graph, for every vertex ai 2 A0,

deg(ai) � d0:5 � (jV 0

2
j � 1)e = d0:5 � (jA0j+ jB0j � 1)e : (5)

Also for any vertex ai 2 A0, let jEA0(ai)j be the number of edges between ai and aj 2 A0

(i 6= j) and jEB0(ai)j be the number of edges between ai and any vertex 2 B 0. Then the
following relationship holds.

deg(ai) = jEA0(ai)j+jEB0(ai)j such that jEA0(ai)j � jA0j�1; jEB0(ai)j � 1; (by Transformation 1)
(6)

From Eq. (6),
deg(ai) � jA0j: (7)

If we assume jA0j < jB0j, deg(ai) > d0:5 � (2jA0j � 1)e = jA0j. But this contradicts Eq. (7).
Similarly jA0j > jB0j cannot hold. Thus,

jA0j = jB0j = jV 0

2
j=2: (8)

From Eqs. (5) and (8),

deg(ai) � d0:5 � (2jA0j � 1)e = jA0j: (9)

Eqs. (6), (7) and (9) conclude jEA0(ai)j = jA0j � 1, which means A0 is a clique of which size
is jV 0

2
j=2 � k2=2 = k1. Thus there exists a clique V 0

1
(� V1) of size � k1 corresponding to A0 by

Transformation 1.
Thus the instance of the RESTRICTED CLIQUE problem, which is corresponding to the

instance of the transformed RESTRICTED 0.5-QUASI COMPLETE GRAPH problem, is a
yes-instance.

By Theorem 2, a restricted version of the 0.5-QUASI COMPLETE GRAPH problem is NP-
complete. The 1-QUASI COMPLETE GRAPH problem is identical to the CLIQUE problem
that is also NP-complete. Although it is not proved whether the problem in 0:5 < p < 1 is
NP-complete or not, we infer the problem is NP-complete.

If we assume that the general p-QUASI COMPLETE GRAPH problem is NP-complete, it is
inferred that there does not exist a polynomial-time algorithm to solve the problem described in
Section 3.1. Consequently, we need to develop some approximation algorithm for this problem.



3.3 An approximation algorithm

We developed an approximation algorithm in which we relax the two conditions on the original
clustering problem in Section 3.1; (1) the solution is to be the minimum cover of clusters, and
(2) each cluster is to be a maximum p-quasi complete graph.

Our algorithm is a kind of greedy algorithm that constructs clusters; (a) starting from the
initial clusters so that each cluster has only one sequence and (b) growing up the size of each
cluster by a stepwise addition of a sequence selected from outside of the cluster in the order of
similarity scores until no additions yield a p-quasi complete graph.

Although it is guaranteed that the result of our algorithm is a set of clusters that are p-
quasi complete graphs, each cluster is not always a maximum p-quasi complete graph since the
sequence addition into a cluster is restricted to one-by-one. For example, for given sequence data
described as (V2; E2) in Figure 4 and connectivity ratio p = 0:5, our algorithm can construct two
clusters fa2; a3; a4g and fb2; b3; b4g but cannot combine them into fa2; a3; a4; b2; b3; b4g since the
addition of any one sequence to either of the two clusters does not yield any 0.5-quasi complete
graph. The computational cost is O(n3 log n) in average and O(n4) in the worst case where n
denotes the number of sequences. The detail of this analysis is described elsewhere [14].

4 Preliminary Result

To evaluate the performance of our clustering method, we classi�ed Escherichia coli protein se-
quences in the EcoProt7 library (available at ftp://ncbi.nlm.nih.gov/repository/Eco/EcoProt/).
From the library, we extracted 1246 protein sequences that are classi�ed into 299 clusters by
Koonin, et al. [15]. As the method by Watanabe and Otsuka [6], Koonin, et al. use a single-
linkage algorithm based on similarity scores. In their method, a cluster is de�ned as a group
of protein sequences connected by BLASTP scores above 70.

On the other hand, we de�ned a cluster as a group of protein sequences described by a
0.5-quasi complete graph of which edges corresponding to FASTA scores (opt scores above 100
with ktup=2), and 370 clusters were obtained by our method. The computational time is about
a total of 4410 seconds (3920 seconds for FASTA execution and 490 seconds for clustering) on
Sun SPARCstation-20 (SuperSPARC-II, clock 75 MHz).

Although the number of clusters in our method is larger than 299 clusters done by Koonin,
et al., these results become very similar by combining some overlapped clusters (some clusters
that share the same sequences) to a cluster in our method.

Figure 5 shows a part of clusters on transcription regulation proteins that have helix-turn-
helix DNA-binding domains extracted from the result of our method. Figure 5 clearly presents
that a set of sequences that are similar to each other have the structure of the p-quasi complete
graph. Also the relationship between Cluster 1 and 2 is corresponding to the multi-domain
structure mentioned in Section 2.2.

In the result by Koonin et al., all the sequences in Cluster 1, 2 and 3 (except Ogt, RbsB
and XylF) are classi�ed into a helix-turn-helix domain cluster. Although Cluster 2 and 3 do
not overlap with each other in the sense of p-quasi complete graph, we con�rmed that Cluster 2
(including Ada) and Cluster 3 (except RbsB and XylF) are classi�ed into two independent clus-
ters by motif analysis using PROSITE Rel. 13.0 [16]; every sequence in the former cluster has
the HTH ARAC FAMILY 1 motif (ACC# PS00041), whereas every sequence in the latter cluster
has the HTH LACI FAMILY motif (ACC# PS00356), and none of them have both motifs.



Ada

YhiX

YhiW

CelD

AppY EnvY

AdiY

YijO

XylR

AraC

YidL

SoxS

Rob

RhaS

RhaR

MelR

MarA

CytR

PurR

RbsB FruR

AscG

MalI

GntR

LacI

XylF

TreREbgR

GalR

RbsR

Ogt

Similarity >= 500,
100 <= Similarity < 500,
Cluster

Cluster 1

Cluster 2 Cluster 3

FrvB

AraF

NuoG

GalS

Figure 5: Clusters on transcription regulation proteins that have helix-turn-helix DNA-binding
domains. Each cluster consists of a 0.5-quasi complete graph.

5 Summary and Conclusions

We have developed a method for clustering a large and mixed set of uncharacterized sequences
provided by genome projects based on their pairwise similarities. On the use of sequence sim-
ilarity, we indicated two problems; (1) when one uses sequences of which average similarity is
relatively low, a fast approximation algorithm (e.g. FASTA) may underestimate their similar-
ities, and (2) the distance derived from similarity may not be metric due to the multi-domain
structure.

To cope with these problems, we introduce a new graph structure called p-quasi complete
graph for describing a cluster of sequences with similarity scores above a chosen threshold.
On the computational cost to �nd clusters from sequence data, we proved that a restricted
version of the p-quasi complete graph problem (p = 0:5) is NP-complete. Thus we present a
polynomial-time approximation algorithm.

By using 1246 Escherichia coli protein sequences, our method classi�ed them into 370
clusters. Compared to the result done by a single-linkage algorithm [15], although the clusters
constructed by our method included a few inappropriate sequences due to too low threshold,
our method successfully detected more precise grouping that �ts the result of motif analysis.
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