
Approximation Algorithms for

Genome Rearrangements

(sorting signed permutations by reversals and transpositions)

Qian-Ping Gu 1 Shietung Peng 1 Hal Sudborough 2

qian@u-aizu.ac.jp s-peng@u-aizu.ac.jp hal@utdallas.edu
1 Department of Computer Software, The University of Aizu

Aizu-Wakamatsu, Fukushima, 965-80 Japan

2 Department of Computer Science, The University of Texas at Dallas

Richardson, TX 75083 U.S.A.

Abstract

Recently, a new approach to analyze genomes evolving was proposed which is based

on comparison of gene orders versus traditional comparison of DNA sequences (Sanko�

et al, 1992). The approach is based on the global rearrangements (e.g., inversions and

transpositions of fragments). Analysis of genomes evolving by inversions and transpo-

sitions leads to a combinatorial problem of sorting by reversals and transpositions, i.e.,

sorting of a permutation using reversals and transpositions of arbitrary fragments. The

problem is conjectured as NP-hard. We study sorting of signed permutations by reversals

and transpositions, a problem which adequately models genome rearrangements, as the

genes in DNA are oriented. We establish a lower bound and give two algorithms for the

problem. Based on the lower bound, we show that the �rst algorithm is a 2-approximation

algorithm. The time complexity of the algorithm may not be bounded by Poly(n), where n

is the length of the permutation to be sorted. Setting a time limit to the �rst algorithm,

we get the second algorithm which is a 2(1 + 1=k)-approximation one, where k � 3 is any

�xed integer, and runs in Poly(n) time.

1 Introduction

Sequence comparison in computational molecular biology is a powerful tool for deriving evolu-

tional and fundamental relationships between genes. However, classical alignment algorithms

handle only local mutations (i.e., insertions, deletions, and substitutions of nucleotides) and

ignore global rearrangements (i.e., inversions and transpositions of long fragments). Palmer

and Herbon studied the rearrangements of mitochondrial genomes of Brassica (cabbage) and

Brassica campestris (turnip) which are very closely related (many genes are 99%� 99:9% iden-

tical) [9]. They found that these molecules, which are almost identical in gene sequence, di�er

dramatically in gene order (see Figure 1). Other studies indicated that the classical methods

of sequence comparison are not very useful to analyze highly rearranged genomes [6, 8]. Those

works and many others showed that genome rearrangements is a common mode of molecular

evolution in mitochondrial, chloroplast, viral and bacterial DNA [4, 2, 3, 1, 5].



Genomes evolve by inversions and transpositions as well as more simple operations of dele-

tion, insertion and duplication of fragments. Analysis of genomes evolving involves solving a

combinatorial \puzzle" to �nd a shortest series of reversals/transpositions from one genome

into another. For genomes consisting of small number of \blocks" the shortest series may

be found by the \pen-and-pencil" method. For example, Palmer et al, showed that Cabbage

can be transformed into Turnip in three reversals as shown in Figure 1 [9, 5]. However, for

genomes of large number of blocks, to �nd the solution is far beyond the possibilities of the

\pen-and-pencil" methods. Recently, a computational approach to analyze the rearrangements

of genomes was proposed by Sanko� et al, [10]. Representing the orders of genes by a permu-

tation, analysis of genomes evolving leads to a combinatorial problem of sorting a permutation

by reversals/transpositions.

Let � = �1�2:::�n be a permutation of f1; 2; :::; ng. Sorting � by reversals/transpositions is to

transform � into the identity I = (12:::n) by reversing and/or transposing arbitrary fragments

of �. Assume that the orders of genes in two genomes are represented by � and I, respectively.

The minimum number of operations (reversals/transpositions) of sorting � are used to measure

the divergence between the genomes. However, it is not easy to �nd the minimum operations

for sorting � and the problem is conjectured as NP-hard. Approximation algorithms for sorting

of � have been studied extensively since 1992 [7, 3, 5, 2]. For a permutation �, let d(�) be the

minimum number of operations to sort � into I. An �-approximation algorithm for sorting

� is an algorithm which �nds a series of operations �1; :::; �t such that �1; :::; �t sort � into I

and t satis�es d(�) � t � �d(�). Kececioglu and Sanko� gave a 2-approximation algorithm for

sorting of � by reversals only [7]. The error bound of 2 was improved to (7/4) by Bafna and

Penvzer [2]. A (3/2)-approximation algorithm for sorting of � by transposition only was given

by Bafna and Penvzer [3].

A signed permutation is a permutation � on f1; 2; :::; ng with + or � sign associated with

every element �i of �. For example, (+1�5+4�3+2) is a signed permutation of f1; 2; 3; 4; 5g.
The identity of signed permutations is (+1+2+:::+n). Signed permutations are more relevant to

genomes rearrangements, since genes are oriented in DNA sequences. Hannenhalli and Penvzer

gave an algorithm which �nds the minimum number of reversals for a signed permutation [5].

Bafna and Penvzer suggested the sorting by reversals and transformations simultaneously

as an approach for understanding the genomes rearrangements related to mammalian genome

evolution, viral evolution, and so on [3]. We consider sorting of signed permutations by reversals

and transpositions simultaneously. For a permutation � = �1�2:::�n, (�i; �i+1) is called a

breakpoint if j�i � �i+1j 6= 1. Obviously, any reversal/transposition can reduce at most 3

breakpoints. Let b(�) be the number of breakpoints in �. Then b(�)=3 is a trivial lower bound

for sorting � into I (I has no breakpoint). It was also known that some permutations of n

elements take at least n=2 operations to be sorted [11]. In this paper, we establish a non-trivial

generalized lower bound on the number of operations for sorting of signed permutations by

reversals and transpositions simultaneously. Then we give two sorting algorithms. Based on

the established lower bound, we show that the �rst algorithm is a 2-approximation algorithm.

The time complexity of the algorithm may not be bounded by Poly(n), where n is the length

of the permutation to be sorted. Setting a time limit to the �rst algorithm, we get the second

algorithm which runs in Poly(n) time and is a 2(1+1=k)-approximation algorithm, where k � 3

is any �xed integer. Some other works related to the above are: Sudborough gave an algorithm

for sorting of an unsigned permutation of by reversals and transpositions [11]. The algorithm



+1 -5 +4 -3 +2

+1 -5 +4 -3

+1 -5 -3

+1

-2

-4 -2

+2 +3 +4 +5

B. oleraces
(cabbage)

B. campestris
(turnip)

r(5,6)

r(3,4)

r(2,6)

Figure 1: \Transformation" of cabbage into turnip.

sorts a permutation of length n in at most 2n=3 operations.

The rest of this paper is organized as follows. In the next section, we give the de�nitions

and notations of the paper. Section 3 gives the lower bound on the number of operations for

sorting of signed permutations. We show the approximation algorithms in Section 4. The �nal

section concludes the paper.

2 Preliminaries

Let � = (�1�2:::�n) be a permutation of f1; 2; :::; ng. For 1 � i < j � n+ 1, a reversal r(i; j) is

the permutation

(1; 2; :::; i� 1; j� 1; :::; i + 1; i;j; :::; n):

� � r(i; j) = (�1:::�i�1�j�1:::�i+1�i�j:::�n), i.e., � � r(i; j) has the e�ect of reversing the order of
�i; �i+1; :::; �j�1. For 1 � i < j � n + 1 and 1 � k � n + 1 with k 62 [i; j], a transposition

t(i; j; k) is the permutation

(1; :::; i � 1; j; :::;k � 1; i; :::; j� 1; k; :::; n):

��t(i; j; k) = �1:::�i�1�j:::�k�1�i:::�j�1�k:::�n, i.e., ��t(i; j; k) has the e�ect of moving �i�i+1:::�j�1

to a new location of � between �k�1 and �k. For 1 � i < j � n + 1 and 1 � k � n + 1 with

k 62 [i; j], a reversal+transposition rt(i; j; k) is the permutation

(1; :::; i � 1; j; :::;k � 1; j� 1; :::; i; k; :::; n):

� � rt(i; j; t) = �1:::�i�1�j :::�k�1�j�1:::�i+1�i�k:::�n, i.e., � � rt(i; j; k) has the e�ect of reversing
�i�i+1:::�j�1 and then moving �j�1:::�i to a new location of � between �k�1 and �k. We will

call the reversal, transposition, and reversal+transposition operations.

Example 1: Let � = (14352). Then � � r(1; 4) = (34152), � � t(1; 4; 5) = (51432), and

� � rt(1; 4; 5) = (53412).

The distance between two permutations � and � is the minimum number of operations

�1; :::; �t such that � � �1 � �2 � � � �t = �. Note that the distance between � and � equals to that



0 12 3 6 4 5 7

black edge

red edge
permutation=(213645)

0 12 3
An alternating cycle

Figure 2: The breakpoint graph G(�) of � = (213645).

between ��1� and the identity I = (12:::n). Thus, we only concentrate on �nding the distance

d(�) between � and I.

A signed permutation is a permutation � on f1; 2; :::; ng with + or � sign associated with

every element �i of �. For example, (+1� 5+ 4� 3+ 2) is a signed permutation. The identity

I = (+1+ 2:::+ n). A reversal r(i; j) on a signed permutation changes both the order and the

signs of the elements within the fragment �i�i+1:::�j�1 (see Figure 1). In this paper, we are

interested in �nding the minimum number of operations to sort a signed permutation into the

identity (+1 + 2:::+ n).

Bafna and Penvzer introduced the notion of breakpoint graph in their study for sorting by

reversals only [2]. Our argument is also based on breakpoint graph, though we look at a di�erent

property of the graph.

Let � be an arbitrary unsigned permutation. Extend � = �1�2:::�n by adding �0 = 0 and

�n+1 = n + 1. Let i � j if ji � jj = 1. We call a pair of consecutive elements �i and �i+1 an

adjacency if �i � �i+1, otherwise a breakpoint. De�ne a breakpoint graph G(�) of � as follows

[2]: There are n + 2 nodes 0; 1; 2; :::; n; n + 1 in G(�). There is a black edge between i and j

if i � j and i; j are not consecutive in �. There is a red edge between i and j if (i; j) is a

breakpoint. The graph G(�) for � = (213645) is given in Figure 2. Notice that number of black

edges equals to the number of red edges in G(�), and equals to the number of breakpoints in

�. The breakpoint graph G(I) for the identity I has no egde.

A sequence of distinct nodes v1; v2; :::; vm is called a segment in a graph G if (vi; vi+1) 2 E(G)

for 1 � i � m � 1. A sequence of nodes v1; v2; :::; vm = v1 is called a cycle in a graph G if

(vi; vi+1) 2 E(G) for 1 � i � m � 1. A cycle/segment in a breakpoint graph G is called

alternating if the colors of every two consecutive edges of this cycle are distinct. For example,

cycle (0; 2)(2; 3)(3; 1)(1; 0) of the graph G(�) in Figure 2 is alternating.

De�ne a transformation from a signed permutation � of n elements to an unsigned per-

mutation �0 of 2n elements as follows [2]: replace +i with (2i � 1; 2i) and replace �i with
(2i;2i � 1) for 1 � i � n. Notice that the identity I = (+1 + 2::: + n) is transformed into the

unsigned identity I 0 = (1234:::(2n � 1)2n). Given any sequence of operations �1; :::; �t which

transforms � into �, obviously, there is a sequence �01; :::; �
0

t which transforms �0 into �0. On

the other hand, for any sequence of operations �01; :::; �
0

t transforming �0 into �0 such that no



0 1 2 10 9 7 8 6 5 3 4 11

+1 -5 +4 -3 +2

Figure 3: The breakpoint graph G(�) of � = (+1� 5 + 4� 3 + 2).

operation breaks any pair of (2i� 1; 2i) or (2i; 2i� 1) for 1 � i � n, then there is a sequence of

operations �1; :::; �t that transforms � into �. In what follows, we assume that any operation on

the transformed unsigned permutation never breaks any pair of (2i�1; 2i) or (2i; 2i�1). Based

on this assumption, the signed permutation � and the transformed unsigned permutation �0 are

equivalent for our purpose. When we refer to the breakpoint graph of a signed permutation,

it is implied that we refer to the breakpoint graph of the transformed unsigned permutation.

Figure 3 gives the breakpoint graph of G(�) for � = (+1� 5 + 4 � 3 + 2).

3 Lower Bound

We �rst show some important properties of the breakpoint graph of a signed permutation.

Lemma 1 For the breakpoint graph G(�) of a signed permutation �, (1) the black degree and

the red degree of each node in G(�) are the same and equal to either 0 or 1; (2) each connected

component of G(�) is an alternating cycle; and (3) each alternating cycle has at least 2 black

(red) edges.

Proof: The lemma holds immediately from the de�nition of G(�). 2

Let � be a permutation, � an operation, and �0 = � ��. Let b(�) and b(�0) be the breakpoints

in � and �0, respectively. Then we have jb(�) � b(�0)j � 3. From this, a trivial lower bound

on sorting any permutation is b(�)=3. Now, we give a better lower bound on sorting signed

permutations. The new lower bound is motivated by the following observation. Given a �, one

operation � can reduce at most 3 breakpoints and if � reduces 3 breakpoints, it must be the

case as shown in Figure 4 (b and c in the top row of the �gure can be exchanged). In this case,

the related elements form a cycle with three red edges. In the other cases, one operation can

reduce at most 2 breakpoints.

Call an alternating cycle a k-cycle if it has k red edges. Call a k-cycle a good cycle, if there

are at most b(k � 1)=2c operations that remove the cycle from G. Intuitively, a good cycle is

a cycle with 2j + 1 red edges (j � 1) that can be removed by j operations. Let c(�) be the

number of good cycles in G(�). Our goal is to prove that d(�) � (b(�)�c(�))=2. The following

theorem is the key to get the lower bound.

Theorem 2 For a signed permutation � and an operation � with �0 = � � �, let G = G(�) and

G0 = G(�0), b and b0 be the number of red edges in G and G0, and c and c0 be the number of

good cycles in G and G0, respectively. Then (b� b0) + (c0 � c) � 2.



a b
c

a’ b’ c’

a a’ b’ c’b
c

Figure 4: Removing three breakpoints by one operation.

Proof: As shown in Figure 5, we consider an operation � as a process that removes some red

(black) edges from G and then add some red (black) edges into G to transform G into G0. We

say an edge (i; j) is removed if (i; j) 2 G and (i; j) 62 G0. We say an edge is added if (i; j) 62 G

and (i; j) 2 G0. Notice that removing edges breaks cycles into segments and adding edges joins

segments into cycles. If a black edge (i; j) is removed by � from a cycle, then the adjacent red

edges (k; i) and (j; l) must be removed by � as well. Therefore, a segment reduced by � must

have two black edges at the ends (see Figure 5). From this, we conclude that

(a) to join one segment into one cycle, we need adding at least one red edge and

(b) to joint two segments into one cycle, we need adding at least two red edges.

Let D and D0 be the sets of cycles in G and G0, respectively. Call a cycle C a new cycle, if

C 2 D0 and C 62 D. Obviously, a new cycle has at least one added red edge. By Lemma 1, an

operation � breaks some cycles in G into segments by removing certain edges �rst, and then

joins every segments into new cycles. Also, operation � never adds an edge to a cycle which

is not broken. In what follows, we only concentrate on the changes of red edges. Obviously,

an operation � removes at most 3 red edges and adds at most 3 red edges, and jb � b0j � 3.

When we say remove/add red edges, we mean the red (black) edges are removed/added by an

operation �. The theorem is proved on all the values of b� b0 case by case.

Case b� b0 = 3:

In this case, � removes three red edges from G. Since no red edge is added, we can not leave

any alternating segment after the removing due to Lemma 1. Assume the three removed red

edges are not in the same cycle. Then there is a cycle which has one removed red edge. From

(3) of Lemma 1, removing the red edge from the cycle will produce an alternating segment, a

contradiction to Lemma 1. So, the three removed cycles are in the same cycle C. Similarly, C

must be a 3-cycle. Since C is eliminated by �, C is a good cycle and (b� b0) + (c0 � c) � 2.

Case b� b0 = 2:

In this case, the number of new cycle is at most 1. If there is no new cycle, then c0 � c and

(b� b0) + (c0 � c) � 2.

So we assume that there is one new cycle C 0. b� b0 = 2 implies that at most one red edge

is added. Therefore, from (a) and (b), C 0 is obtained by joining the only segment P which is

reduced by removing red edges from a cycle C of G. From Lemma 1 and b � b0 = 2, it is easy

to see that if C 0 is a k-cycle, then C is a (k + 2)-cycle. If C 0 is a good cycle, then there are

b(k � 1)=2c operations that removes C 0 which implies there are b(k + 1)=2c operations that



0 2 1 8 7 5 6 3 4 9

0 2 1 3 4 95 6 7 8

0 2 1 3 4 95 6 7 8

rt(3,5,7) removes red edges (1,8), (7,5), (6,3) and black edge (6,7)
from permutation (21875634),

and then adds red edges (1,5) and (8,3) to get (21567834).

Figure 5: Removing/adding edges from/to breakpoint graph.

removes C, i.e., C is good cycle as well. Thus, c0 � c and (b� b0) + (c0 � c) � 2.

Case b� b0 = 1:

In this case, the number of new cycles is at most 2. If there is at most one new cycle, then

c0 � c+ 1 and (b� b0) + (c0 � c) � 2.

Assume there are two new cycles. Let C1 and C2 be the new cycles. From b � b0 = 1, two

red edges are added and each new cycle has one added red edge. From (a) and (b), C1 and C2

are obtained by joining segments P1 and P2, respectively. Assume P1 and P2 are reduced from

di�erent cycles, then at least one segment, say P1, is reduced from a cycle C by removing one

red edge. This implies that when we join P1 into a cycle C1, C1 = C, contradicting with C1

a new cycle. Therefore, P1 and P2 are reduced from the same cycle C by removing some red

edges. By a similar argument as that in Case b� b0 = 2, if C1 and C2 are good cycles then C

is a good cycle as well, which implies c0 � c+ 1 and (b� b0) + (c0 � c) � 2.

Case b� b0 = 0:

In this case, there are at most three new cycles. If there are at most two new cycles, then

c0 � c � 2 and (b� b0) + (c0 � c) � 2.

So, we assume there are three new cycles. Let C1, C2, and C3 be the three new cycles

obtained by joining segments P1, P2, and P3, respectively. By a similar argument as that of

Case b� b0 = 1, P1, P2, and P3 are reduced from the same cycle C by removing some red edges

(see Figure 6). And if C1, C2, and C3 are good cycles, then C is a good cycle. Therefore,

c0 � c+ 2 and (b� b0) + (c0 � c) � 2.

Case b� b0 � �1:
Since there are at most three new cycles, c0 � c+ 3 and (b� b0) + (c0 � c) � 2. 2

From Theorem 2, we can get our lower bound.



C
P

P

P

C

C

C

1

2

3

1

2

3

Figure 6: Breaking one cycle into three.

Theorem 3 For a signed permutation �, d(�) � (b(�)� c(�))=2.

Proof: Let �1; :::; �t be a shortest series of operations transforming � into the identity permu-

tation I. Denote �i�1 = �i � �i for 1 � i � t (�0 = I) and apply Theorem 2 for �i and �i, we

have

d(�i) = d(�i�1) + 1

� d(�i�1) + (b(�i)� b(�i�1) + c(�i�1)� c(�i))=2:

From this and d(�0) = b(�0) = c(�0) = 0, we get

d(�i)� (b(�i)� c(�i))=2 � d(�i�1)� (b(�i�1)� c(�i�1))=2

� ::: � d(�0)� (b(�0)� c(�0))=2 = 0:

Substituting i = t, the theorem holds. 2

Since a good cycle has at least three breakpoints, c(�) � b(�)=3. Therefore, (b(�)�c(�))=2 �
b(�)=3 for any signed permutation �. On the other hand, based our lower bound, it is easy to

�nd permutations of n elements which take at least n=2 operations to be sorted by checking

the breakpoint graphs. Thus, (b(�) � c(�))=2 gives a better measure for the lower bound on

d(�).

4 The Algorithms

We �rst give an algorithm which sorts a signed permutation � into the identity I by at most

b(�)� 2c(�) operations. From the lower bound (b(�)� c(�))=2 of the last section, we conclude

the algorithm is a 2-approximation algorithm. The outline of the algorithm is given in Figure 7.

Let C be a good cycle with 2j+3 breakpoints (j � 0). Then, we can remove 2j breakpoints

from C in j operations and the rest 3 breakpoints in one operation. For the breakpoints not in a

good cycle, we remove at least one breakpoint by one operation. From these, algorithm SORT1

transforms � to I in at most c(�) + (b(�) � 3c(�)) = b(�) � 2c(�) operations, which implies



Algorithm SORT1(�);

begin

Construct G(�) and let C1; :::; Cr be the alternating cycles of G(�);

For 1 � i � r and Ci a good cycle

remove 2j + 1 breakpoints in Ci by j operations;

Remove the other breakpoints;

end.

Figure 7: Sorting a signed permutation.

Algorithm SORT2(�; k);

begin

Construct G(�) and let C1; :::; Cr be the alternating cycles of G(�);

For 1 � i � r

if Ci has at most k breakpoints and Ci a good cycle

remove 2j + 1 breakpoints in Ci by j operations;

Remove the other breakpoints;

end.

Figure 8: Sorting a signed permutation in poly(n) time.

d(�) � b(�) � 2c(�). From d(�) � (b(�)� c(�))=2 and b(�)�2c(�)

(b(�)�c(�))=2
� 2, b(�) � 2c(�) � 2d(�),

i.e., algorithm SORT1 is a 2-approximation algorithm.

Given a k-cycle C, we do not have a poly(k) time algorithm to check if C is a good cycle (a

brute-force algorithm works but takes exponential time). Therefore, the run time of algorithm

SORT1 may not be bounded by Poly(n) if there is a long cycle in G(�).

Now, we revise algorithm SORT1 a bit to get a more time e�cient algorithm SORT2 by

sacri�cing slightly the guaranteed error bound. Let k � 3 be a �xed integer, algorithm SORT2

checks cycles with at most k red edges to �nd good cycles. The algorithm is given in Figure 8.

Let ck(�) be the number of good cycles with at most k breakpoints in G(�). Then algorithm

SORT2 transforms � into I in at most b(�) � 2ck(�) steps, i.e., d(�) � b(�) � 2ck(�). Since

c(�)� ck(�) is the number of good cycles each of which has at least k + 1 breakpoints, c(�)�
ck(�) � b(�)=(k + 1). Following a detailed calculation, b(�)� 2ck(�) � 2(1 + 1=k)d(�). That

is, algorithm SORT2 is a 2(1 + 1=k)-approximation algorithm. Obviously, algorithm SORT2

runs in Poly(n) time for any constant k.

5 Conclusional Remarks

Computational approaches provide e�cient tools for large-scale comparative genetic mapping

which o�ers exciting prospects for understanding genomes evolution. This paper gives the �rst



steps for computing the distance between genomes in the sense of reversals/transpositions rear-

rangements. We expect our algorithms calculates the reversal/transposition distance between

genomes much more accurately for the practical data and could be used for the comparasion

between genomes of large size that is beyond the possibility of the pen-and-pencil method. How

to check a cycle a good cycle seems the bottleneck of the algorithms of this paper. Future works

include developing heuristic methods for �nding good cycles for practical data, and reducing

the error bound (currently 2 or 2(1 + 1=k)) further.

References

[1] V. Bafna and P. Pevzner. Sorting by reversals: genome rearrangements in plant organelles

and evolutionary history of x chromosome. Mol. Biol. and Evol., 12:239{246, 1995.

[2] V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. SIAM J. on

Computing, 25(2):272{289, 1996.

[3] V. Banfa and P. Pevzner. Sorting permutations by transpositions. In Proc. of 6th ACM-

SIAM Annual Symposium on Discrete Algorithms, pages 614{623, 1995.

[4] N. Franklin. Conservation of genome form but not sequence in the transcription antiter-

mination determinants of bacteriophages �, �21, and p22. Jour. of Molecular Evolution,

181:75{94, 1985.

[5] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial algorithm

for sorting signed permutation by reversals). In Proc. of 27th ACM Symposium on Theory

of Computing (STOC'95), pages 178{189, 1995.

[6] S. Karlin, E.S. Mocarski, and G.A. Schachtel. Molecular evolution of herpesviruses: ge-

nomic and protein sequence comparisons. Jour. of Virology, 68:1886{1902, 1994.

[7] J. Kececioglu and D. Sanko�. Exact and approximation algorithms for the inversion dis-

tance between two permutations. In Proc. of the 4th Annula Symposium on Combinatorial

Pattern Matching, Lecture Notes in Computer Science 684, pages 87{105 (Extended ver-

sion has appeared in Algorithmica 13:180{210, 1995), 1993.

[8] D.J. McGeoch. Molecular evolution of large dna viruses of eukaryotes. Seminars in Virol-

ogy, 3:399{408, 1992.

[9] J.D. Palmer and L.A. Herbon. Plant mitochondrial dna evolves rapidly in structure, but

slowly in sequence. Jour. of Molecular Evolution, 27:87{97, 1988.

[10] D. Sanko�, G. Leduc, N. Antoine, B. Paquin, B.F. Lang, and R. Cedergren. Gene order

comparasions for phylogenetic inference: evolution of the mitochondrial genome. In Proc.

of Natl. Acad. Sci. USA,89, pages 6575{6579, 1992.

[11] H. Sudborough. Permutations, pancakes, and phylogeny. Manuscript.


