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Abstract

A conjecture of Mirkin, Muchnik and Smith is answered a�rmatively which connects

the inconsistency function, a biologically meaningful dissimilarity measure for a gene and

species tree, to the mutation cost function, a combinatorial measure based on mapping

of trees. A linear-time algorithm for computing the inconsistency function is also derived

from the conjecture.

1 Introduction

As DNA sequences have become easier to obtain, interesting emphasis has been placed on con-

structing gene trees and from these, reconstructing evolutionary trees for species. Because of

the presence of paralogy and sorting of ancestral polymorphism, gene trees and species trees

are often inconsistent (e.g., Neigel and Avise, 1986; Pamilo and Nei, 1988; Takahata, 1989;

Wu, 1991). Therefore, a major concern that arises is how to combine di�erent, sometimes

contradictory, gene trees into an evolutionary tree called species tree (Fitch, 1970; Goodman

et al., 1979; Nei, 1987). Several ideas have been suggested for the last twenty years (see, for

example, Robinson 1971; Waterman and Smith, 1978; Margush and McMorris, 1981; Hendy

et al., 1984; Adams, 1986; Barth�elemy, 1986). A common characterization of these ideas is

that they consider phylogenetic trees as formal mathematical objects and proposed the similar-

ity/dissimilarity measures based only on combinatorial consideration. The weakness of these

measures is lack of biological meaning (Mirkin et al., 1995) and computable intractability in

general (see, for example, DasGupta et al., 1996).

Biologically meaningful similarity/dissimilarity measures are also addressed. Since all con-

tradictions among di�erent gene trees are resulted from the gene divergence, the divergence



should be presented and explained in the combined species tree (Fitch, 1970; Goodman et al.,

1979). The gene divergence can be the results of either speciation or duplication (Ohno, 1970).

The speciation happens between species. If the gene divergence occurs with only speciation,

the gene and species trees are identical. But, the duplication event happens within species.

When duplications occur, the gene and species trees might be inconsistent. If the common an-

cestry of two genes can be tracted back to a speciation event, then they are said to be related

by orthology (Fitch, 1970); if it is tracked back to a duplication event, then they are related

by paralogy. Taking into account orthology and paralogy evolutions, Goodman et al. (1979)

proposed a new similarity/dissimilarity measure for annotating species tree with duplications,

gene losses and the nucleotide replacements. Later, Guig�o et al. (1994) elaborated the idea for

identifying and locating the gene duplications in eukariotic history.

Guig�o et al. (1994) introduced the mutation cost functions for measuring the dissimilarity

between gene and species trees using so called mapping of the trees. The mapping of trees

was considered implicitly in Goodman et al. (1979) and explicitly in Page (1994). As we shall

see later, the concept of mapping and thus the mutation cost function is rather formal and

technical. Therefore, the de�nitions of duplications and subsequent events based on mapping

are not substantiated with any biologically meaningful model. This leads Mirkin et al. (1995)

to propose a new, biological meaningful model for explaining and measuring the dissimilarity

between a single gene and species tree. They �rst formalized the concepts of gene duplication,

loss, information gap in graph-theoretic terms, and then proposed a procedure for measuring the

dissimilarity between a gene and species tree by comparing every subtree of the gene tree with

the corresponding subtree in the species tree. Whenever an inconsistency occurs, a duplication

event is assumed to explain the inconsistency. This duplication is reected in the species tree

with the event's history leading to the current situation in species. The history along the tree

involves certain gene copy losses which accompany the duplication during the evolutionary

history. The total number of duplications, loss and information gap events involved in all the

inconsistency is de�ned to be the inconsistency measure between the gene and species tree. In

the same paper, after numerous testing, Mirkin et al. conjecture that the inconsistency measure

coincides with the mutation cost function.

The major goal of our work is to prove that the conjecture is true ( in Section 3.2). This

may justify the use of the inconsistency measure in evolutionary tree reconstruction. Our work

also provides an e�cient algorithm for computing the inconsistency function (in Section 3.3).

2 A model based on gene duplications

In this section we briey introduce the Mirkin-Muchnik-Smith model for comparing a gene

species tree. For its biological meaning, the reader is referred to Mirkin et al. (1995).

For a set I of N biological taxa, the model for their evolutionary history is a full, rooted

binary tree T with N leaves each labeled by a distinct element of I. Any internal nodes denote

ancestors of the taxa in I and are considered as a subset (also called cluster) of its subordinate

leaves. Thus, the evolutionary relation \m is a descendant of n" is expressed, in set-theoretic

setting, just as \m � n", where we use strict inclusion, in contrast to notation m � n allowing

the equality of m and n.

Each internal node has two children, which are denoted by a(n) and b(n). If n1; n2; � � �nk



is a path connecting node n1 and its descendant nl, then nk � nk�1 � � � � � n1, and any

node m belongs to the path between n1 and nl if and only if nl � m � n1, and it is called an

intermediate between n1 and nl.

A subset S of nodes of T is incompatible if x\ y = � for any x; y 2 S. For an incompatible

subset S in T , we denote by T jS the smallest subtree T containing S as its leaf set. The

homomorphic subtree of T induced by S is the subgraph obtained from T jS by contracting all

degree 2 nodes except for its root. These concepts are illustrated in Figure 1.
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Figure 1: (a) A phyolgenetic tree T ; (b) The subtree T jS for S = f1; 2; x; 6g; (c) The homo-

morphic subtree induced by S.

In order to annotate duplication history into a phylogenetic tree, the concept of duplication

is introduced in Mirkin et al. (1995).

De�nition 2.1 Let T be a phylogenetic tree with leaf set I representing a set of N species and

let L = f�;+;�;+�g. A mapping � : T ! L is called a gene duplication if (1) it is monotone,

that is, �(m) � �(n) when m � n, and, (2) it is saturated, that is, �(n) = +� for the root n of

T .

A node m 2 T is called mixed if �(m) = +�, speciated if �(m) = + or �, and gapped if

�(m) = �. The maximal mixed, speciated/gapped nodes have particular evolutionary meaning:

the maximal mixed node is the root, which represents the duplication event itself, the maximal

speciated/gapped nodes correspond to the gene losses. The total number of these maximal

nodes will be called the complexity of duplication �, which counts for the total number of the

evolutionary distinct events associated with the duplication1.

2.1 Comparing a gene tree with a species tree

Let T be a species tree rooted at t with leaf set I and let G be a single gene tree rooted at g

with leaf set J such that J � I. We also assume that in the gene tree G there is exactly a gene

for each species. Therefore, there is an injection from the leaves of G to those of T . T and G

will be said to be root-consistent if each of the sets of the leaf descendants, a(g); b(g), of the

children of the root g is contained in a child-set a(t) or b(t) of t, and root-inconsistent otherwise.

1In Mirkin et al. (1995), the complexity is di�erently de�ned as the total number of maximal duplications,

maximal speciated and maximal gapped nodes. For so-called operational duplications, their de�nition and ours

become identical. Main reason for modifying the de�nition is that under our de�nition, the conjecture is always

true, not just for operational duplications.



Obviously, the root-consistent means that the `root branches' of the tree G consistent with the

`root branches' of T ; an event causing the divergence of the root descendants occurring in the

species tree T is also reected in the divergence of the speci�c gene family represented by the

gene tree G.

If G and T are root-inconsistent, we use a duplication event in the root of T to express the

inconsistency. Thus, we pose the following postulate.

Duplication/Speciation Principle(Mirkin et al., 1995). Root-inconsistency of

the trees G and T means that a duplication event in the gene corresponding to

tree G occurs at the root of the species tree T and evolves in T in such a way

that contemporary organisms corresponding to the leaves in a(g) have one of the

divergent gene copies and the leaves in b(g) the other.

Duplication/Speciation Principle induces the following simplest duplication assignment �g :

T ! f+�;+;�; �g:
1. for any i 2 I, �g(i) is de�ned by

�g(i) =

8><
>:

+ if i 2 a(g);

� if i 2 b(g);

� if i 2 I � J ;

2. for any internal node n 2 T ,

�g(n) =

8>>><
>>>:

+ if n \ a(g) 6= � and n \ b(g) = �;

� if n \ b(g) 6= � and n \ a(g) = �;

+� if n \ a(g) 6= � and n \ b(g) 6= �;

� if n � I � J:

The mapping �g can be computed just in one bottom-up run through tree T using at most

N steps, each involving comparing two sets of at most N elements. The complexity c(�g)

demonstrates the extent of the biologically meaningful di�erence between G and T , and will

be denoted as c(g; T ) = c(�g).

To compare the entire gene tree G with species tree T , we need comparing all the subtrees

of G with T . For simplicity, we assume that these two trees have an identical leaf set, that

is, I = J . Recall that T (n) denotes the subtree of T rooted at the node n. The comparing

procedure consists of sequential comparisons of all the gene subtrees G(m) with those subtrees,

T (n), of T such that m � n. If G(m) is root-consistent with a subtree T (n) of T , we proceed

to subtrees of T (n). When G(m) is root-inconsistent with T (n), the minimum duplication

assignment �nm : T (n) ! f+�;+;�; �g is de�ned as a duplication of gene G in the node n

(2 T ) to explain the inconsistency. Figure 2 illustrates the comparison of a gene tree G (in

(b)) with a species tree T (in (a)). There are three subtrees rooted at A;B; and C which are

root-inconsistent with the corresponding subtrees. The corresponding duplications are shown

in Figure 2 (c), (d), and (e) respectively, where maximal speciated/gapped nodes are marked

with square boxes. The costs of duplications in (c), (d), and (e) are 8, 5 and 4 respectively.

The total inconsistency, c(T=G), between T and G is de�ned through all the duplication

events:

c(T=G) =
X
g02G

c(g0; T ):
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Figure 2: Duplications between a species tree (a) and a gene tree (b)

3 Computing the inconsistency

3.1 Mirkin-Muchnik-Smith conjecture

Given a species tree T and a gene tree G with the same leaf set of N taxa. By de�nition,

computing the total inconsistency requires O(N3) steps: any of (N � 1) non-singleton subtrees

of G is compared with at most (N � 1) subtrees of T , and each comparison involves checking

for the root-inconsistency and then de�ning the duplication if necessary, which takes at most

N2 steps. Actually, computing the total inconsistency of T and G is much easier based on a

conjecture posed by Mirkin et al. (1995)which relates c(T=G) to the combinatorial properties

of mapping G into T . Before stating the conjecture, we introducing some necessary concepts

and facts regarding to mapping G into T .

For any node g 2 G, we use M(g) to denote the node of T being its least common ancestor,

that is, the smallest cluster satisfying g � M(g). This correspondence M , �rst considered by

Goodman et al. (1979), is referred to as mapping of G into T by Page (1994). We call M(g)

the destination of g. Recall that for an internal node g, a(g) and b(g) denotes its two children.

De�nition 3.1 Let g be an internal node of G. It is said to be type-1 under the mapping

if M(a(g)) � M(g) and M(b(g)) � M(g), where a(g) and b(g) are the two children of g; it

is type-2 if M(a(g)) � M(g) and M(b(g)) = M(g) or vice verse; it is type-3 if M(a(g)) =

M(b(g)) =M(g).

Obviously, the following fact is true.

Proposition 3.1 (Mirkin et al., 1995) A node g 2 G is a type-2 or type-3 node if and only

if subtrees G(g) and T (M(g)) are root-inconsistent.



The mutation cost function associated with the mapping itself is de�ned as follows. We use

Gi to denote the set of all type-i nodes in G for i = 1; 2; 3.

Node and its children Destinations Duplication event Cost
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Figure 3: Mapping G onto T .

De�nition 3.2 (Guig�o et al., 1994) The cost L(g) associated with g 2 G is de�ned as:

L(g) =

8><
>:

jM(g)M(a(g))j+ jM(g)M(b(g))j if g 2 G1

jM(g)M(a(g))j+ 2 if g 2 G2 and M(a(g)) �M(g);

1 if g 2 G3:

where jM(g)M(a(g))j denotes the number of intermediate nodes between M(g) and its descen-

dant M(a(g)) in T . The mutation cost function c(G; T ) associated with the mapping of G into

T is the sum of all L(g) of the internal nodes g 2 G.

Figure 3 presents the mapping of the gene tree G onto the species tree T which are illustrated

in Figure 2. In their paper, Mirkin et al. (1995) conjecture that c(T=G) = c(G;T ) for any two

trees with the same labeled leaf set.



3.2 The proof of the conjecture

In this section, we shall prove that their conjecture holds. Here, we assume that T is a species

tree and G a gene tree and both have the same leave set I.

Proposition 3.2 If T and G are root-inconsistent and � denotes the duplication assignment

from G to T induced by the Duplication/Speciation Principle, then the number of the maximal

speciation/gapped nodes is equal to the number of the mixed nodes plus 1.

Sketch of Proof. It follows from the fact that any intermediate node between the root of T

and a maximal speciated/gapped node is a mixed node. 2

Now we consider the duplication mappingM from G to T . Suppose that there are k1 type-1

nodes, g1i (1 � i � k1), k2 type-2 nodes, g2i (1 � i � k2) and k3 type-3 nodes, g3i (1 � i � k3).

Since G is a full binary tree with N leaves, G has N � 1 internal nodes. Therefore,

k1 + k2 + k3 = N � 1: (1)

By Proposition 3.1, we also have

Proposition 3.3 There are k2 + k3 duplications between G and T .

For a type-1 node g1i, 1 � i � k1, M(a(g1i)) and M(b(g1i)) are distinct from M(g1i). The

unique path from M(a(g1i)) to M(b(g1i)) through M(g1i) is called a path in the mapping M

from G to T . For our purpose, we say that such path starts at M(g1i). We also say that such a

path passes through any intermediate between M(a(g1i)) and M(g1i) or between M(b(g1i)) and

M(g1i). For a type-2 node g2i, 1 � i � k2, let M(a(g2i)) �M(g2i) and let M(b(g2i)) =M(g2i).

The unique path from M(g2i) to its descendant M(a(g2i)) is called a path in the mapping

M from G to T , starting at M(g2i). Such a path passes through all intermediates between

M(a(g1i)) and M(g1i).

Proposition 3.4 For any non-duplication (i.e., type-1) node x, the total number of duplica-

tions in which x is mixed is exactly one less than the number of paths passing through x in the

mapping M of G in T .

For any duplication node ti, the total number of duplications in which ti is mixed is one less

than the sum of the numbers of paths passing through ti and of the paths starting at ti.

For understanding Proposition 3.4 and the following proof, one would better study the example

illustrated in Figure 2 and Figure 3 again.

Proof. Consider a non-duplication node x 2 T . Set

G0
x = fg0 2 G jM(g0) � x �M(p(g0))g;

G00
x = fg00 2 G j x \ g00 6= � & x �M(g00)g;

G
0

x = fg0 2 G jM(g0) \ x = � & p(g0) 2 G00
x; & a(p(g0)) 2 G0

xg;

where a(p(g0)) is the other child of p(g0). It is not di�cult to see that G00
x contains all inter-

mediate nodes between the nodes in G0
x and the root g of G, and G

0

x consists of all siblings of

nodes in G0
x. Furthermore, the parents of all nodes in G0

x are either type-1 or type-2 nodes and



the corresponding paths starting at their destinations pass through x. In fact, as we shall see

later, for a node g 2 G0
x, if its parent is a type-1 node, then its sibling is in G

0

x; if its parent is

a type-2 node, then its sibling is in G00
x. Therefore, G

0
x [G

0

x [G00
x is a subtree rooted at g, the

root of G. Consider the homomorphic subtree, Gx, of G induced by nodes in G0
x [G

0

x. Recall

that Gx is obtained from G0
x [ G

0

x [ G00
x after the contraction of all degree-2 nodes except for

the root.

Claim 1. Let y 2 G. If y induces a duplication at M(y) 2 T in which x is mixed. Then, y

is a node in the subtree Gx.

Proof. Since duplication occurs in M(y), then G(y) and T (M(y)) are root-inconsistent.

Therefore, M(a(y)) =M(y) or/and M(b(y)) =M(y). Since x is mixed in this duplication, we

have x � M(y), which implies that y 2 G00
x. Since a(y) \ x 6= � and b(y) \ x 6= �, y is not a

degree-2 node in G0
x [G

0

x [G00
x, and thus in Gx. 2

Conversely, we have

Claim 2. Let y 2 Gx. If a(y) 2 G00
x and b(y) 2 G00

x, then, y is a type-3 or type-2 node and

x is mixed in the duplication induced by y.

Proof. Since x � M(a(y)) and x � M(b(y)), both M(a(y)) and M(b(y)) are intermediate

nodes in the path from the root t to x. If M(b(y)) � M(a(y)), then M(y) = M(a(y)), and

M(y) =M(b(y)) otherwise. By the de�nition of G00
x, x \ a(y) and x \ b(y) are non-empty, and

so x is mixed in the duplication induced by y. 2

Claim 1 and Claim 2 reect that all duplications in which x is mixed are induced by the

corresponding internal nodes of Gx. On the other hand, there are also one-to-one corresponding

between all paths passing through x and all type-1 or type-2 nodes in Gx. Given a node y 2 G.

Suppose y is a type-1 or type-2 node and the corresponding path passes through x. By the

construction of Gx, y 2 Gx. Furthermore, we have the following facts.

Claim 3. Let y 2 Gx. If a(y) 2 G0
x and b(y) 2 G

0

x, then y is a type-1 node and the

corresponding path starting at M(y) passes through x.

Proof. By de�nition, M(a(y)) � x � M(y) and M(b(y)) � M(y). Thus, y is a type-1

node. Obviously, the corresponding path passes through x. 2

Claim 4. Let y 2 Gx. If a(y) 2 G0
x and b(y) 2 G00

x, then y is a type-2 node and the

corresponding path starting at M(y) passes through x.

Proof. Since x �M(b(y)) andM(a(y)) � x, then y = a(y)[b(y) � x[M(b(y)) = M(b(y)).

By the de�nition, M(y) = M(b(y)). Thus, y is a type-2 node. Since M(a(y)) � x �M(y), the

corresponding path passes through x. 2

Let the numbers of type-1, type-2, type-3 nodes in Gx be n1, n2; n3 respectively. By Claim

1 and Claim 2, the number of duplications in which x is mixed is n2 + n3. By Claim 3 and

Claim 4, the number of paths passing x is n1 + n2. Since the subtree Gx is a binary, full, then

n1 = n3 + 1: Thus, the fact is true for a non-duplication node.

Similarly, the fact can be proved for duplication nodes. The only di�erence is that we have

to include all node y 2 G such that M(y) = x in the set G00
x. This concludes the proof of

Proposition 3.4. 2

Let duplication occur at p nodes of T , t1; t2; � � � ; tp; and let there be ti duplications at node

ti: Di1; Di2; � � � ; Diti : Then, by Proposition 3.3,

pX
i=1

ti = k2 + k3: (2)



By Propositions 3.2, 3.4 and Formula (1), (2),

c(T=G) =
Pp

i=1

Pti
j=1

c(Dij)

=
Pp

i=1
ti +

P
1�i�k1

(jM(g1i)M(a(g1i))j+ jM(g1i)M(b(g1i))j) + k1
+
P

1�i�k2 jM(g2i)M(a(g2i))j+ k2 � (N � 1) + k2 + k3
= k2 + k3 +

P
1�i�k1(jM(g1i)M(a(g1i))j+ jM(g1i)M(b(g1i))j)

+
P

1�i�k2 jM(g2i)M(a(g2i))j+ k2
=
P

1�i�k1(jM(g1i)M(a(g1i))j+ jM(g1i)M(b(g1i))j)

+
P

1�i�k2(2 + jM(g2i)M(a(g2i))j) + k3
= c(G;T )

Hence, we have proved the following conjecture.

Theorem 3.1 (Mirkin-Muchnik-Smith Conjecture) For any T and G with the same set

of leaves, c(T=G) = c(G; T )).

3.3 A linear-time algorithm

In this subsection, we shall present a linear-time algorithm for computing the cost function

c(G; T ) for a gene tree G and a species tree T .

First, we compute the mapping M from G to T in linear time. Given a node u 2 G, by

the de�nition of mapping, its destination M(u) is the lowest common ancestor of M(a(u)) and

M(b(u)). This simple observation leads the following algorithm for computing the mapping

from a gene tree to a species tree. In our algorithm, we de�ne an auxiliary binary tree MT

with information attached to various nodes. MT has the same structure as G. At each node

u 2 MT , we associated a pointer m(u), which points to the destination M(u) of u after it is

computed. For u; v 2 G, we use lca(u; v) to denote the lowest common ancestor of u and v

and LCA(u; v) to denote the instruction for �nding lca(u; v). Finally, recall that in postorder,

i < j if and only if i is to the left of j or a descendant of j(see Aho et al., 1974).

Algorithm 1

1. Generate a sequence, S, of LCA instructions by processing each node

of T in postorder. For each internal node u 2 G, generate an instruction:

LCA(M(a(u));M(b(u)));

2. Execute the instruction sequence S. After �nishing an instruction

corresponding to u 2 G, save the result to MT (u).

3. Output MT (u).

Theorem 3.2 The mapping MT can be computed in O(n) time and O(n) space on a RAM

using Algorithm 1.

Proof. Obviously, Step 1 takes O(n) times and the instruction set S can be saved in O(n)

spaces.



In the instruction sequence S, the nodes involving in an instruction depend on the results

of two previous instructions, and thus each instruction must be answered before processing the

next. Therefore, we use the on-line algorithms for �nding lowest common ancestors presented

in Harel and Tarjan(1984) or Schieber and Vishkin (1988). Both algorithms takes O(n) time

and O(n) space for executing the sequence S of (n� 1) LCA instructions. 2

Recall that for a node u 2 T , the depth of u is the length of the simple path from the root to

itself. The depth of the root is obviously 0. For computing the mapping cost function c(G;T ),

we need to preprocess the tree T to get the depth D(u) of each node u 2 T and then calculate

the cost using information arrays D and MT .

Theorem 3.3 The mapping cost can be computed in O(n) time and O(n) space on a RAM

using Algorithm 2.

Proof. The correctness follows from the de�nition of the mapping cost. Observe that Both

Step 1 and Step 3 take O(n) time and O(n) space. By Theorem 3.2, Step 2 takes O(n) time

and O(n) space. Thus, Algorithm has the required time and space complexity. 2.

Algorithm 2

1. Process each node of T in preorder. For each node u, calculate its

depth D(u).

2. Use Algorithm 1 to compute the mapping MT from G into T .

3. Compute the mapping cost c by process each internal node of MT .

Initially, c = 0. For each internal node u 2MT (u), update the cost by

c = c+D(m(a(u))) +D(m(b(u)))� 2D(m(u))� 2

if m(a(u)) 6= m(u) and m(b(u)) 6= m(u),

c = c+D(m(a(u)))�D(m(u)) + 1

if only m(a(u)) 6= m(u), or

c = c+ 1

otherwise.

By Theorem 3.1, the inconsistency cost is also computable in linear time and space on a

RAM.
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