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Abstract

This paper proposes a k-group alignment algorithm for multiple alignment as a practical

method. In iterative improvement methods for multiple alignment, the so-called group-to-

group two-dimensional dynamic programming has been used, and in this respect our pro-

posal is to extend the ordinary two-group dynamic programming to a k-group alignment

programming. This extension is conceptually straightforward, and here our contribution

is to demonstrate that the k-group alignment can be implemented so as to run in a rea-

sonable time and space under standard computing environments. This is established by

generalizing the A� search approach for multiple alignment devised by Ikeda and Imai [8].

The k-group alignment method can be directly incorporated in existing methods such as

iterative improvement algorithms (Berger and Munson [2], Gotoh [4]) and tree-based (it-

erative) algorithms (Hirosawa et al. [6]). This paper performs computational experiments

of applying the k-group method to iterative improvement algorithms, and shows that our

approach can �nd better alignments in reasonable time.

1 Introduction

The multiple sequence alignment is the problem to �nd the alignment of multiple sequences

with highest score due to a given scoring criteria between characters. The solution of this

problem for multiple sequences of DNA and proteins represents the similarity among them and

is applied to various important �elds such as the prediction of three dimensional structure of

proteins and the inference of phylogenetic tree in molecular biology.

The method based on Dynamic Programming (DP) is a well-known approach for multiple

sequence alignment problem. This method searches all vertices in the grid-like acyclic graph,
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and has O(nd) time and space complexity for d sequences of length at most n. This approach

is e�ective for small dimension of two or three. In fact, with the increase of computing power,

three-dimensional DP became feasible when the length n is not so large. But, it is impractical to

apply this method directly to a little larger dimensional problem because nd becomes enormous

then. For large d, approximate algorithms dividing d sequences into two groups and applying

two-dimensional DP between the two groups have been used (Berger, Munson [2], Gotoh [4]).

The resultant alignment is improved gradually by iteration of dividing and aligning. Another

method for multiple alignment is a tree-based (iterative) algorithm [6], and in it two-dimensional

DP is also used. In connection with these algorithms, Hirosawa et al. [5] employed three-

dimensional DP as the basis for an initial alignment to the subsequent iterative algorithm.

The A� algorithm reduces search space without lack of optimality of the result alignment.

There were proposed some methods of reducing the search space in multiple alignment (Car-

rillo and Lipman [3], Spouge [9], etc.), but the A� algorithm with upper bounding operation

would be the best method to derive an optimal alignment [7, 8] (see also [9]). Araki et al. [1]

proposed to use an A� algorithm for two-dimensional DP in the Berger-Munson iterative algo-

rithm. They use an estimate derived from a score table which can reduce the search space in

the two-dimensional case. The estimate for A� multiple alignment in Ikeda and Imai [8] was

demonstrated to be very powerful, and in this respect generalizing the A� algorithm in [8] to

k-group alignment is rather natural.

This paper investigates a k-group alignment algorithm for multiple alignment. In the k-

group alignment problem, d sequences are given with k disjoint groups of them, each being

internally aligned, and a best alignment among these k groups should be found with only

inserting a gap simultaneously in the same position for the alignment of each group. First, it

is noted that the same approach in [8] can be applied to the group alignment problem. Several

ways of applying A� search to this problem are discussed. Then, its connection with the

standard iterative improvement algorithm is described. Through computational experiments,

it is demonstrated that the k-group alignment can be performed for k = 3; 4; 5 in a practical

time depending on the problem size, and this produces better alignments. For example, for

9 sequences of length about 750, whose similarity is relatively low, 3-group alignment can

be performed very fast even starting with a bad initial alignment, and 4-group alignment

can be executed for mildly good alignments. For 21 sequences of length about 430, whose

similarity is quite high, 5-group alignment can be performed iteratively. About the alignment

quality, 3-group alignment yields better solutions compared with 2-group DP almost with a

little additional time. 4- and 5-group alignment methods can �nd better solutions in most

cases but require more time. The practicality of k-group alignment is thus shown, and further

investigation of elaborating this with other methods and enhancing itself should be done.

2 A� Algorithm for Multiple Alignment

The multiple alignment problem can be solved by �nding the shortest path on some directed

acyclic graph. Suppose that Sk denotes the k-th sequence of length nk = O(n) and d denotes

the dimension, the number of sequences. Then in the directed acyclic graph G = (V;E) such

that V = f(x1; : : : ; xd) j xi = 0; 1; : : : ; nig and E = [e2f0;1gdf(v; v + e) j v; v + e 2 V; e 6= 0g, a

path from the vertex s = (0; : : : ; 0) to the vertex t = (n1; : : : ; nd) corresponds to an alignment



of sequences. In case of d > 2, the sum of all scores for pairwise sequence alignments is

used as the score for the multiple sequence alignment in general. This corresponds to de�ning

each edge length in G as the sum of all corresponding edge length in the graphs for pairwise

alignments. Let Gij = (Vij ; Eij) denote the graph for the alignment of Si and Sj (i < j), that is,

Vij = fvij = (xi; xj) j v = (x1; : : : ; xd) 2 V g and Eij = f(uij; vij) j (u; v) 2 E; uij 6= vijg. Then

the length of edge (u; v) in E is de�ned as l(u; v) =
P

1�i<j�d l(uij ; vij) where l(uij; vij) denotes

the length of edge (uij; vij) in graph Gij and is de�ned from the score table between characters.

Thus, the multiple alignment problem can be formulated as a shortest path problem on G. The

shortest path on such a graph can be computed by dynamic programming in a direct way, but

its complexity �(nd) is intractably large for large d.

The A� algorithm can �nd a shortest path without searching the whole graph if good

estimates on the shortest path length from each vertex to t are at hand. Ikeda and Imai [8]

show a method of obtaining such good estimators by computing pairwise two-dimensional
�
d

2

�

subproblems for d sequences. For the case d > 2 (the 2-group alignment in the sequel can be

handled similarly), it uses the following estimator h: h(v) =
P

1�i<j�d
L�(vij ; tij), where L

�(u; v)

denotes the shortest path length from u to v. This estimator uses the shortest path length in

the pairwise alignment problem as the estimate for the length of the path corresponding to

the shortest path in the multiple alignment problem by making use of relations of G and

Gij. In higher dimensional problem, necessary time and space for solving pairwise problems is

negligible. It is clear that each estimate h(v) does not exceed the actual shortest path length

from v to t, and moreover h is dual feasible, i.e., for any edge (u; v) in E,

l(u; v) + h(v) =
X

1�i<j�d

(l(uij ; vij) + L�(vij ; tij)) �
X

1�i<j�d

L�(uij; tij) = h(u):

Hence the A� algorithm using this estimator is reduced to the following simple one.

1. For arbitrary pair of i and j satisfying 1 � i < j � d, apply DP to graph Gij from vertex

tij and calculate L�(vij; tij) for any vij in Vij.

2. Apply the Dijkstra method to graph G from vertex s with the length of edge (u; v)

modi�ed as l(u; v) + h(v)� h(s) where h(v) =
P

1�i<j�d L
�(vij; tij).

3 Group Alignment and Its Use in Iterative Algorithms

3.1 k-Group Alignment

Since the multiple alignment problem becomes hard to solve when d is large, as a subproblem,

the group alignment is considered. Originally, in the group alignment, d sequences are divided

into two groups, say d0 sequences and d � d0 sequences (0 < d0 < d), and then �xing the

alignment in each group, it solves a two-dimensional alignment problem between two groups.

In this two-dimensional problem, since the alignment in each group is �xed, when a gap is

inserted into a group, it is simultaneously inserted in the same position. See Figure 1.

For general k > 2 (k � d), the k-group alignment problem can be de�ned similarly. In this

problem, d sequences are given as k disjoint groups, and each group is associated with some

alignment of sequences in the group. In a typical case, for an alignment of d sequences, k aligned
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Figure 1: (a) Aligning seven sequences by a 2-group alignment for fThcg and others, (b) an

obtained alignment (--- is a newly inserted gap)

groups can be obtained simply by dividing this alignment into k groups (and removing trivial

gaps inside each group alignment). Then, the k-group alignment problem �nds a best-score

alignment of d sequences under a condition that, in each group, each column of its alignment

should be �xed. Hence, when a gap is inserted into a sequence in some group, the same gap

should be inserted in the same position in every sequence in the group. In this case, a k-

dimensional grid-like graph is used to solve the k-group alignment problem, as in the original

k-dimensional alignment problem. See an example of k = 2 and d = 7 in Figure 1. Since the

score function is de�ned to be the sum of scores of all pairs, the A� approach can be directly

extended to this k-group alignment problem by virtue of the principle of optimality.

There may be considered two types of A� search algorithm for k-group alignment.

� (group-based precomputing strategy) For each pair of groups, compute the score of 2-

group alignment between the two groups, and make the summation of those scores as a

lower-bound estimator in solving the k-group alignment problem.

� (sequence-based preprocessing strategy) In the initial stage of the algorithm, solve 2-

dimensional alignment between every pair of sequences as preprocessing. Then, in solving

each k-group alignment problem, compute the summation of scores of all pairs of sequences

contained in di�erent groups.

The former A� estimate is stronger than the latter. On the other hand, to obtain the former

estimate we may have to solve
�
k

2

�
2-group alignment problems, while in the latter only prepro-

cessing in the beginning is su�cient. Even when solving 2-group alignment problems between

general two groups, we can make use of the scores of all-pairs of sequences computed in the

preprocessing stage to solve it by the A� search by the sequence-based strategy.

3.2 Iterative improvement

The standard randomized iterative improvement method proposed by Berger and Munson [2]

works as follows:

1. Construct an initial alignment by some method;

2. Divide d sequences into two groups randomly;



3. Remove trivial gaps in each group;

4. Solve the 2-group alignment to obtain a new alignment;

5. If the score decreases, update the current alignment to the new one;

6. If a stopping condition is met, stop; otherwise return to step 2;

In the step 2 above, all the sequences are divided into two groups randomly. There is a

method of dividing them into a group of one sequence and a group consisting of the other

d� 1 sequences. This partition is called a restricted partition in [6]. Also in that case, instead

of using randomization, one sequence for a group of a single element may be changed in a

round-robin fashion. There are many other methods (see [6]).

It is rather natural to extend the iterative algorithm in a way that in step 2 it divides the

sequences into k groups for k � 2. We call such iterative algorithm the k-group iterative algo-

rithm. The A� algorithm for group alignments can be utilized in the k-group algorithm. There

can be considered two methods of dividing d sequences into k groups, by directly generalizing

the above-mentioned existing methods for k = 2.

� (k-random-grouping; simply called random) This method divides d sequences randomly

into k groups so that no group becomes empty. This will be denoted by RA(k) in the

computational results below.

� (k-restricted-grouping; simply called restricted) This method divides them into k � 1

groups consisting of a single sequence and another group consisting of the other sequences

where each sequence in the former k� 1 groups is chosen randomly. This will be denoted

by RI(k) in the next section.

In [5], the latter method with k = 2 was used to derive a best-�rst iterative improvement

algorithm, and it was observed that the restricted-grouping strategy produces favorably nice

solutions compared with the random-grouping method.

When the A� is used in the iterative improvement algorithm with the restricted-grouping

strategy, solving
�
k�1

2

�
subproblems out of

�
k

2

�
can be dispensed with if we do the same prepro-

cessing as in sequence-based preprocessing strategy in the preceding subsection.

4 Computational Results

In order to investigate the actual e�ciency of this approach, experiments aligning actual se-

quences of proteins have been performed. Our implementation is designed to evaluate several

strategies in a system, and is coded in such a general setting. This causes in some places re-

dundant computation which can be avoided by cleverly using the information obtained in the

preprocessing stage. This point should be remarked especially in observing timing results in

the computational results. For example, the following points can be improved further from the

current code.

� When the A� is used in the iterative improvement algorithm with the restricted-grouping,

as described in the preceding section, solving
�
k�1

2

�
subproblems out of

�
k

2

�
can be dis-

pensed with. However, in the current implementation, these subproblems are solved from

scratch every time.



� Even when solving 2-group alignment problems between general two groups, we can make

use of the scores of all-pairs of sequences computed in the preprocessing stage to solve

it by A� search. However, we do not incorporate this in the code. Instead, a kind of

lazy 2-dimensional DP algorithm is implemented. Here, \lazy" execution may be done in

many ways. For example, in the beginning only a fraction of DP table is computed, say in

a constant-bandwidth region, and values of other elements are computed when necessary.

� In the experiment, the linear gap system is used instead of the a�ne gap system (see

below). To obtain more meaningful alignments, the a�ne gap system is considered to

be better, and performing the experiment with the a�ne gap system is important. For

d-dimensional DP alignments, it is known that with the a�ne gap system it takes more

time compared with the case of the linear gap system as d increases. From this, one might

think that k-group alignment method by A� with the a�ne gap system performs much

worse than that with the linear gap system as k becomes larger, but we suspect that for

k = 3 (and maybe 4,5) the slow-down would be a small constant factor since by A� the

search space is drastically cut o�. Of course, this point should be actually tested, which

is left as future work. Concerning the performance of our A� approach, we suspect that

changing the alignment cost system from the simple pairwise sum of 2-alignments to the

weighted sum may a�ect more.

Concerning the score matrix, the PAM-250 matrix has been used in assigning edge length with

each sign of score reversed. The linear gap system ax for the gap of length x is used (extending

the current system to the a�ne gap system ax+ b for the gap of length x would be practically

important work). With regard to the gap penalty, the minimum value in the PAM-250 matrix,

a = �8, has been adopted. All the experiments were done on SPARCStation 20 with 128

megabytes memory.

4.1 Case with Higher Similarity

In this experiment, elongation factor TU (EF-TU) and elongation factor 1� (EF-1�) are used

as in [8]. The number d of sequences is 21, and the length n of each sequence is about 450. The

cost of the best alignment found by the experiment is 294813 with length 482. The average score

per amino pair is 294813

482�(21
2
)
� 2:91, and is higher than in the experiment in the next subsection.

As an initial alignment, we adopted a solution of the A algorithm in [7, 8] with parameter

81=80. The score of this initial alignment is 294201. By using a tree-based DP, better initial

solutions can be obtained, but those solutions are processed by group DP, while the solution

by the A algorithm is not. Starting with the solution by the A algorithm, the alignment score

is improved fast initially.

Starting from this initial solution, we tested 10 series of 100 iterations with using di�erent

random numbers. Both of the k-random-grouping RA(k) and k-restricted-grouping RI(k) are

examined. Some of computational results are given in Figure 2. Box plots are used, where a box

plot comprises these elements: 1) a box with 1a) a central line showing the median, 1b) a lower

line showing the �rst quartile, 1c) an upper line showing the third quartile; 2) 2 lines extending

from the central box of maximal length 3/2 the interquartile range but not extending past the

range of the data; 3) outliers, points that lie outside the extent of the previous elements.
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Figure 2: Computational results for

EF-1�: (a) A box plot of �nal scores

after 100 iterations (10 series), (b) A

box plot of running times for the esti-

mator precomputation (\P" in short;

in the left side) and A� search (\S"

and in the right side) per step in the

computation of typical series in (c), (c)

Score improvement processes of typi-

cal series such that its �nal score at-

tains the median score among the �rst

three trials for each k and strategy.(c)

For smaller k such as 2 and 3, the k-random-grouping method RA(k) tends to produce

worse solutions than the k-restricted-grouping method RI(k). For large k such as 4 and 5, this

tendency becomes less clear. In these experiments, the 3-restricted grouping method may be

said to be the best one in regard to both computation time and solution quality. About the

solution quality, the 3-restricted grouping produces better solutions than 2-restricted grouping,

as seen in Figure 2(a) and even if we use the scores of the 2-restricted grouping with 200

iterations, results are almost same. Here, it should be stressed that this speed of 3-group



alignment is achieved by the use of A�. It is also observed that, even for k = 4; 5, k-alignment

problem can be solved in a reasonable time even for this rather large-scale problem. Concerning

the e�ect of A�, for k = 3 (and 4), its estimates are nice enough to reduce the search space

drastically. In fact, the A� search takes much less time than the precomputation of estimator

in this case (Figure 2(b)). For k = 5, the estimates become less e�ective, and sometimes the

A� search space becomes large, although it is still manageable.

4.2 Case with Lower Similarity

In the next experiment, d = 9 sequences of Chitin Synthase of lengths 710, 717, 723, 728, 730,

732, 756, 760, 762 are investigated. The best alignment score found by repeated applications

of RI(4) is 59606 with length 811. The average score per amino pair is 59606

811�(9
2
)
� 2:04, and is

lower than the number 2.91 for EF-1� above. In this respect, the similarity is less compared

with EF-1�, but each sequence is about twice longer.

We adopted a left-aligned alignment as an initial one. Since the initial alignment is simply

left-aligned, the initial score is bad and �25992. Even for this bad initial alignment, 3-group

alingments with A� can be performed e�ciently, and yet 4-group alignment for such a bad

alignment is hard to execute with A�. The score improvement processes for 2- and 3-group

alignments are shown in Figure 3(c).

To see the e�ectiveness of 4-group alignments, we adopted another initial alignment for

k = 4 obtained by a series of 3-restricted-grouping iterative improvement alignment after 50

iterations starting with the above-mentioned bad alignment. This alignment has score 59409.

Note that there are many ways of obtaining rather good initial solutions, and in this regard

this kind of initial alignment for k = 4 is easily obtained. After 50 iterations from this initial

solution for k = 4, the 3-restricted-grouping method �nds an alingment of score 59499 (the

best score among thee trials of 100 iterations using di�erent random numbers for k = 2; 3).

Starting with this initial solution for k = 4, 4-group alignments RI(4) are used for the iterative

algorithm with 20 iterations. Some of computational results are shown in Figure 3(a) and (b)

where box plots are again used (see the explanation in the previous subsection).

It would be rather striking that even for this set of long sequences with lower similarity,

the A� method solves the 3-alignment problems very well, as in the above experiments. Again,

the actual A� search time is less than the precomputation time for its estimator. Also, 4-group

alignment could be run fast enough to improve nice solutions more. Since the similarity is

relatively low, the A� search often requires more time than the estimator precomputation time

for k = 4 here, unlike it start to occur for k = 5 in the preceding case of high similarity.

4.3 Observations on Computational Results

Although the above-mentioned results are still preliminary ones, the following may be observed.

� We have tested two methods of dividing d sequences into k groups. It is observed that

the k-restricted-grouping method RI(k) tends to produce better-score alignments than

the k-random-grouping method RA(k) on the average.

� As k becomes larger, the k-grouping takes more time, but produces on the average better

alignment results. Although for k = 4; 5 it takes de�nitely larger time compared with 2-
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Figure 3: Computational results for

9 sequences of Chitin Synthase: (a)

A box plot of �nal scores (100 itera-

tions from the left-aligned initial solu-

tion for k = 2; 3; 20 iterations from

the intermediate one for k = 4; 10 se-

ries for each), (b) A box plot of run-

ning times for estimate precomputa-

tion (\P"; left) and A� search (\S";

right) per step in the computation of

typical series in (a,c), (c) Score im-

provement processes of typical series

from the left-aligned initial alignment

such that its �nal score attains the me-

dian score among the �rst three trials

for each k and strategy,(c)

and 3-group alignments, by these results it is veri�ed that 4- (and 5- with high similarity)

group alignments can be practically used to polish up an obtained alignment further.

� The A� search greatly reduces the running time required by DP. In fact, in these ex-

periments, 3-group alignments can be solved in time within a small constant factor of

the running time of standard two-dimensional DP. Furthermore, their solution quality is

de�nitely better than that of 2-group methods.



� Related to a widely known fact concerning k-opt local search algorithms for combinatorial

problems, one should realize that there are so many local optima in such combinatorial

problems, and there do exist many local optima for 2-group alignments which are not local

optima for 3- and higher order group alignments. By increasing k, one might think it takes

more time to check the local optimality of current solution which makes this approach

less practical, but this is not a problem at all since 3- and higher order group alignments

can produce better solution than 2-grouping method within reasonable additional time

and checking the local optimality is less important in this respect.

Thus, this paper proposed the use of k-group alignment for k � 3, and showed its power

through computational experiments. There are still many points which can be improved further

in the current code, and developing an re�ned system would be very interesting as future work.
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