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Abstract

This paper proposes new algorithms for protein structure alignment. Protein structure

alignment is, given two three-dimensional protein structures, to �nd spatially equivalent

residue pairs. Each algorithm consists of the following two steps: �rst an initial super-

position is computed; then a structure alignment is computed and re�ned using bipartite

graph matching. The proposed algorithms are shown to be useful through an experimental

comparison with a previous alignment algorithm.

1 Introduction

Classi�cation of three-dimensional protein structures (or folding patterns) is important for a
better understanding of the relationships between proteins and their functions. Indeed, several

studies have been done [6, 8, 9, 11]. Protein structure alignment plays a key role in them,

where protein structure alignment is, given two three-dimensional protein structures, to �nd

residue pairs occupying spatially equivalent positions. A variety of protein structure alignment

methods have been proposed and utilized [6, 7, 9, 10, 12, 13]. However, they do not seem to be
su�cient from a viewpoint of the computation time and the quality of the obtained alignments.

Thus, we have developed simple and fast alignment algorithms for three-dimensional protein

structures. To �nd an alignment, we �rst compute an initial superposition. Next, we compute
an alignment using bipartite graph matching. Then, this alignment is improved through an

iterative improvement procedure which also uses bipartite graph matching. There are two

versions (RAND and FRAG) depending on the methods of �nding initial superpositions: a

random sampling technique is used in RAND, while a fragment based searching method is used
in FRAG. In this paper, we describe the algorithms and the experimental results.

阿久津 達也：群馬大学工学部情報工学科，〒 376桐生市天神町 1-5-1



p
1

p
2

p
5

p
4

p
3

p
6

p
7

q
2

q
4

q
5

q
3

q
1

q
6

q
7

P Q

Figure 1: Example of a structure alignment. In this example, an alignment

fhp1; q1i; hp2; q2i; hp3; q3i; hp5; q4i; hp6; q6i; hp7; q7ig is obtained.

1.1 Previous Work

A variety of methods have been proposed for protein structure alignment [6, 7, 9, 10, 12, 13].

Rao and Rossmann, and Pascarella and Argos proposed iterative improvement methods [9, 10],
which are similar to the methods described in this paper. However, in their methods, initial
superpositions are not given automatically. Moreover, not systematic but heuristic methods

are used for iterative improvement. Vriend and Sander developed a greedy method in which

small fragments were assembled into larger structures [6, 13]. However, a similar heuristic
improvement procedure as in [9, 10] is used. Taylor and Orengo developed the double dynamic

programming method [12]. However, their method seems to be less robust for noises because

local coordinates are used in their method. Nussinov and Wolfson applied geometric hashing to

protein structure alignment. However, a huge memory space is required for geometric hashing.
�Sali and Overington developed a stochastic method using probability density functions [11].
However, their method is complicated since a lot of programs are used to obtain probability

density functions. We also developed a dynamic programming based method [2]. However, only

rough alignments are obtained in this method because alignments between small fragments are

not computed.

2 Alignment Using Bipartite Graph Matching

In this section, we describe a common framework of the proposed alignment algorithms: RAND

and FRAG. Note that they di�er only in part of �nding initial superpositions.
We assume that each three-dimensional structure is input as a sequence of points (C� atoms)

in three-dimensional space. This representation method is used in most alignment algorithms.

Before describing the framework, we brie
y review the rmsd (root mean square deviation)

[10]. Let P = (p1; � � � ;pn) and Q = (q1; � � � ; qn) be two point sequences, where pi (resp. qi)
denotes a point in three-dimensional space. Then, drms(P;Q) (rmsd between P and Q) is



de�ned by

drms(P;Q) = min
T

vuut1

n

nX
i=1

jT (pi)� qij
2 ;

where the minimum is taken from all isometric transformations (rotations and translations) T

in three-dimensions, and jxj denotes the length of a vector x. Such T can be computed in O(n)

time as well as drms(P;Q).

Now, we will describe the common framework. Let P = (p1; � � � ;pm) and Q = (q1; � � � ; qn)

be two input sequences (m � n). We call a partial correspondenceM = fhpi1; qj1i; � � � ; hpik ; qjkig

between P and Q an alignment if i1 < i2 < � � � < ik and j1 < j2 < � � � < jk hold (see Fig.

1). For an alignment M , M(P ) denotes a subsequence (pi1; � � � ;pik) of P , and M(Q) denotes

a subsequence (qj1 ; � � � ; qjk) of Q. The following procedure describes the common framework

of RAND and FRAG, where �1; �2; L1 are constants depending on the required quality of the
output alignments.

(1) Let M0 := fg.

(2) Repeat (3)-(8) until no initial superposition di�erent from the previous ones can be found.

(3) Find an initial superposition between P and Q.

(4) Compute an alignment M between P and Q using a graph matching technique.

(5) If jM j > L1 and drms(M(P );M(Q)) < �1, repeat (6)-(7) several times.

(6) Translate and rotate P applying rms-�tting to M(P ) and M(Q).

(7) Compute an alignment M between P and Q using a graph matching
technique.

(8) If jM j > jM0j and drms(M(P );M(Q)) < �2, then let M0 :=M .

(9) If M0 6= fg, output M0. Otherwise, output "there is no good alignment".

Note that steps (6)-(7) correspond to an iterative improvement procedure, where this pro-

cedure is repeated 5 times in the current implementation. In steps (4) and (7), an alignment

M between P and Q is computed using a graph matching technique in the following way (see
Fig. 2). From P and Q, we construct a bipartite graph G(P;Q;E) where E is a set of edges

between P and Q. hpi; qji 2 P � Q is contained in E if jpiqjj < �, where jpiqj j denotes the

distance between pi and qj, and � is a constant depending on the required quality of the output

alignments (currently, we use � = 4:0 � 5:0�A). Moreover a cost is associated with each edge

(cost(pi; qj) = jpiqj j). ThenM is a minimum cost maximum matching of G(P;Q;E) under the

condition thatM is an alignment. That is, M is an alignment such that
X

hp
i
;q

j
i2M

cost(pi; qj) is

minimum under the condition that jM j � jM 0j holds for any other alignment M 0. Such M can

be computed in O(mn) time using a dynamic programming algorithm as in string (sequence)

alignment. Thus, this algorithm works in O(mnS) time, where S is the number of initial super-

positions. For details about bipartite graph matching, refer an appropriate textbook on graph

algorithms [1].
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Figure 2: Computation of an alignment using a graph matching technique.

3 Finding Initial Superpositions

As mentioned before, RAND and FRAG di�er only in part of �nding initial superpositions. In

this section, we describe a method for �nding initial superpositions in each algorithm.

3.1 Random Sampling

RAND uses a very simple random sampling technique for �nding initial superpositions (see

Fig. 3).
First note that if we choose triplets PP = (ps1 ;ps2 ;ps3) from P andQQ = (qt1 ; qt2 ; qt3) from

Q, an isometric transformation (translation and rotation) T for P such that T (PP ) and QQ

lie on the same plane and
P

3
k=1 jpsk � qtk

j2 is minimum is determined uniquely except a mirror

image. Moreover, such a transformation can be computed in O(1) time using a similar method
as in rmsd. We use such a transformation to obtain an initial superposition. If hpsk ; qtki 2 M

holds for k = 1; 2; 3, it is expected that T (P )
S
Q becomes a good initial superposition for a

structure alignment M . Thus, testing all pairs of triplets PP and QQ, we can obtain a good

initial superposition. However, this method takes O(m4n4) time since there may be O(m3n3)
pairs of triplets (i.e., O(m3n3) initial superpositions).

Next we reduce the computation time using a random sampling technique. Let M be an

optimal or a near optimal alignment, and let K = jM j. Let Prand be a subset of P which

consists of O(m
K
) elements randomly chosen from P . Then, it is expected that at least one

element of Prand appears in M with high probability. Moreover, increasing the size of Prand by
a constant factor, we can prove that at least three elements of Prand appear in M with high

probability, where we omit the proof here. Therefore, testing all pairs of triplets PP from
Prand and QQ from Q, we can �nd a good initial superposition with high probability. In this

case, the time complexity is reduced to O(m
4n4

K3 ) since O((m
K
)3n3) pairs are tested. If there is a

good alignment, it is expected that K � cm holds for some constant c (for example, c = 1

2
).

Thus, setting K = cm for some constant c, the time complexity can be reduced to O(mn4).
Although O(mn4) time is not small, we can reduce the average case computation time using
several heuristics, where we omit the details here.



Q

t2
q

t1
qP

s2
p

p
s1

T(P) Q

Figure 3: Finding an initial superposition in RAND. Although two points are used for each
structure in this example, three points are used in three-dimensions.
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Figure 4: Finding an initial superposition in FRAG. rms-�tting between Pi and Qj is used to

compute an initial superposition.

3.2 Searching for Fragment Pairs

FRAG uses a very simple method to obtain initial superpositions as well as RAND does (see

Fig. 4).
Let Pi denotes a fragment (pi;pi+1; � � � ; pi+L�1) of P , where L is a constant (L = 15 is used in

the current version). Qi is de�ned in the same way. Note that, for each pair of fragments Pi and

Qj, we can obtain a superposition T (P )
S
Q using a transformation T which gives rmsd between

Pi and Qj. FRAG tests initial superpositions obtained from all pairs Pi and Qj in this way.
Since there are O(mn) pairs and L can be considered as a constant, FRAG works in O(m2n2)

time. Although O(m2n2) time is not e�cient, the average case computation time can be reduced

if we only test the cases where drms(Pi; Qj) is small (for example, drms(Pi; Qj) � 1:0�A).



Table 1: Comparison of structure alignment algorithms.

DATA DP RAND FRAG

DATA1 DATA2 RMSD LEN TIME RMSD LEN TIME RMSD LEN TIME

1ubq/76 3fxc/98 2.54 40 1.03 2.22 58.9 4.94 2.35 57 0.32

3icb/75 5cpv/108 1.98 40 0.87 1.82 57.6 5.88 1.78 58 0.55

2cro/63 2wrp/109 3.67 30 0.66 1.63 29.8 11.86 1.25 30 0.45

7pcy/99 1azu/127 2.89 50 0.33 2.34 71.9 30.52 2.30 71 0.82

4hhb/141 5mbn/153 1.25 120 0.91 1.44 139.0 3.67 1.50 140 2.80

1gox/359 1fcb/509 2.18 300 28.55 1.13 324.9 70.66 1.14 325 10.31

4 Experimental Results

RAND and FRAG were compared with a dynamic programming based algorithm (denoted by

DP). DP was previously proposed by us [2], in which input sequences are divided into small
fragments and then a dynamic programming technique is applied [2]. Similar algorithms are

used in [12, 13].

Comparison has been done using PDB (Protein Data Bank) data [4] and SUN SPARC
STATION-10, where all algorithms were implemented in C language.

The experimental results are summarized in Table 1. Each item in DATA1 and DATA2

denotes a PDB code, where chain A is used in the cases of 4hhb and 1fcb. The length (the
number of points) is also described along with each structure. It is known that protein structures
in the same row have similar structures. For each algorithm and each pair of structures, rmsd

(drms(M(P );M(Q)) (�A)) and the length (jM j) of the obtained alignment and CPU time (sec)

are described. Note that the average values among ten trials are described for RAND since it is
a randomized algorithm (i.e., outputs depend on random numbers generated in the program).

First observe that, in most cases, the rms distances obtained by RAND and FRAG are
smaller than those by DP and the lengths of the alignments obtained by RAND and FRAG are

longer than those by DP. Thus we can conclude that the proposed algorithms compute better

alignments than DP. Next observe that the qualities of the alignments obtained by FRAG are
as good as those by RAND, while the CPU times of FRAG are much shorter than those of

RAND. Thus we can conclude that FRAG is more practical than RAND.

5 Conclusions

In this paper, we have presented two algorithms for protein structure alignment. Experimental

results show that one of the presented algorithms (FRAG) computes good alignments e�ciently.

Moreover, FRAG is simple and easy to implement. Thus, we can conclude that FRAG is

practical.

Future work is as follows. Although we only considered the alignment problem between two
protein structures, alignment among multiple protein structures is also important. Of course,

several studies have been done for multiple protein structure alignment [9, 11]. However, they



do not seem to be su�cient. Thus, multiple protein structure alignment should be studied

further.

In this paper, each protein structure is treated as a rigid body. That is, alignments are

computed considering global positions only. Although such a treatment is adequate for com-

paring structures with strong similarities, it seems to be inadequate for comparing structures

with weak similarities. Especially, in the case of classi�cation of protein structures (or folding
patterns) into the small number of families, more 
exible pattern matching methods should be

employed. Holm et al. combined several algorithms for that purpose [6]. We also proposed

another method [3]. But, these methods do not seem to be su�cient. Thus, more 
exible

pattern matching methods should be developed.
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