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Abstract

A generalization of the dynamic programming algorithm applied to the multiple align-

ment of protein sequences is proposed. The algorithm has two main procedures: (i) local

correspondences between sequences - hereafter called anchor points - are selected accord-

ing to a criterion that combines local and global simlilarity values, (ii) the alignment is

constructed recursively by choosing and linking together the optimal anchor points. This

multiple sequence alignment algorithm achieves a good compromise between the O(LN )

complexity of the exhaustive dynamic programming approach applied to N sequences of

length L and the poor quality of the alignments obtained with methods based on a hierar-

chical clustering of the sequences.

1 Introduction

Distantly related proteins often display ambiguous relationships that cannot be detected by

pairwise sequence alignment algorithms. On another hand, the local relationships between two

proteins can be highlighted by using simultaneous comparison of more than two sequences.

Therefore, multiple sequence alignments almost always yield to more accurate structural, func-

tional or phylogenetic inferences.

Such a situation can be illustrated on a simple example. Let us consider the three pentapep-

tides of the �gure 1. Although the pairs (S1; S2) and (S2; S3) share three and two residues

respectively, S1 and S3 do not display direct similarity. In this way, the completely di�er-

ent polypeptides S1 and S3 can be related by chaining the comparisons S1 � S2 and S2 � S3.
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Figure 1: Three pentapeptides.

Therefore, the quality of a local similarity must be estimated using a simultaneous comparison

of every pairs of sequences. The major di�culty of the multiple sequence alignment problem

comes from the prohibitive complexity of an exhaustive search of the optimal solution. Dy-

namic programming allows to align sequential objects with a computational time-complexity

proportional to the product of their lengths. This method is used to align two protein sequences

[10]. Theoretically, multiple alignment of protein sequences can be implemented using the same

principle [9]. However, if we have N sequences to align, this generalization leads to a search in

an N -dimensional space. Consequently, such an exhaustive solution to the alignment problem

can be applied in practice to no more than three sequences. Over three sequences, the existing

methods always break down the alignment process in order to obtain a polynomial complexity.

A frequently used method consists in reducing the alignment of N sequences to N � 1 align-

ments of two sequences [3]. During a preliminary step, the sequences are aligned by pairs.

Then, estimation of the similarity between the sequences allows a hierarchical clustering: at

each step of the clustering, the two most similar proteins are replaced by a "multiple" sequence

formed by the result of their alignment. The process is repeated until the �nal alignment cor-

responding to the root of the clustering tree is obtained. When two sequences created during

the clustering process are aligned, the mutation costs are averaged over the elementary costs

given by every possible pair of residues.

This method has two main weaknesses :

� It only uses N � 1 out of N(N � 1)=2 possible sequence comparisons,

� Every error in the alignment occurring at any step of the process will be transmitted to

the remaining hierarchical clustering steps.

A cyclical adjustment of the produced alignments has been proposed to solve these problems

[13]; however, the updating cycle implies a rather heavy computational cost and convergence

to the theoretical optimum is not proved.

Finally, the problem is to �nd an e�cient compromise between the intractable optimality of the

exhaustive dynamic programming algorithm and the low reliability of hierarchical clustering

methods. In this direction, we describe in the following sections a new algorithm organized in

two consecutive steps (�gure 2):

� A list of anchor points is selected using local and global similarity criteria based on the

simultaneous comparison of all the sequences.

� A multiple sequence alignment which is optimal relatively to the previously selected an-

chor points is generated using a combination of hierarchical and exhaustive dynamic

programming.
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Figure 2: The main steps of the proposed algorithm.

The a priori selection of anchor points adds local constraints on the possible alignments and,

therefore, leads to a reduction of the search space. This selection speed up dramatically the

alignment procedure.

On another hand, the alignment does not result from an iterative clustering of the sequences,

but involves a simultaneous comparison of all the sequences. In this way, the preliminary

selection step allows the following dynamic programming step to focuse the search onto the

most relevant local similarities. This "selection-optimization" process improves of the quality

of the alignments as will be shown on weakly homologous domains of the immunoglobulin

superfamily.

2 Methods

The selection of the anchor points is performed using two criteria: a local similarity criterion

and a global one.

2.1 The local similarity criterion

The principle of the dynamic programming algorithm forces the scoring function to be locally

decomposable [11]. This constraint explains the frequent use of additive criteria of homology.

However, one can be easily convinced that a cumulated score calculated with mutation and

insertion tables does not directly measure the statistical signi�cance of an alignment. In fact,

the expected value of a match between two randomly chosen residues is negative for the PAM

matrices [4, 1]. Consequently, matches limited to few residues are often over-evaluated with an

additive scoring function in comparison to long range similarities.

Using a Monte-Carlo procedure, the statistical likelihood of an alignment can be estimated by

the distribution of the obtained scores when the sequences are randomly scrambled. The score

can then be normalized using the mean value and the standard deviation of the distribution.

Theoretical results about the statistical distribution of the scores have been published [6]. They

are limited to alignments without gap.

It is possible to compute a priori the distribution of scores for particular sequences and matrix



of substitution. It is given for N polypeptides of given length L by the L-th power PL
N (x) of

the characteristic polynomial:

P 1

N (x) =
X

s

pN (s):x
s;

where pN (s) is the probability of obtaining an elementary score equal to s when N residues are

randomly chosen on each sequence with respect to their composition [2]. The coe�cient of the

term xs of the polynomial PL
N (x) corresponds to the probability that the score s will occur on

an alignment of n random polypeptides of length L.

There are
QN
n=1

(Ln �L+ 1) possible alignments of length L on N sequences of length Ln. Let

QN;L(s) be the distribution function of scores on segments of length L, the probability that an

alignment of length L randomly chosen in the N sequences will have a score greater than s is:

RN;L(s) = 1� (1�QN;L(s))
Q
N

n=1
(Ln�L+1)

The likelihood of the local alignment is �nally expressed by the local score:

LSc(N; s; L) = �ln[RN;L(s)]:

The following table shows that the statistical signi�cance of a similarity has no linear rela-

tionship with the cumulated score s. For example, a similarity score equal to 8 between two

segments of length 1 or 15 has the same statistical signi�cance (=12) as a score equal to 11

between two segments of length 5.

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 -7 -2 0 1 2 3 4 5 6 6 7 7 8 9 9 9 10 10 10 13 13

2 -15 -3 -1 0 2 3 4 5 6 7 8 9 10 11 11 12 12 13 14 14 15

3 -23 -5 -3 0 1 3 4 5 6 8 9 10 10 11 12 13 14 15 15 16 17

4 -31 -7 -4 -2 0 2 4 5 6 8 9 10 11 12 13 14 15 16 17 17 18

5 -39 -9 -5 -3 0 1 3 5 6 7 9 10 11 12 13 14 15 16 17 18 19

6 -47 -11 -7 -4 -1 1 3 4 6 7 9 10 11 12 14 15 16 17 18 19 20

7 -54 -12 -8 -5 -2 0 2 4 5 7 8 10 11 12 14 15 16 17 18 19 20

8 -61 -14 -9 -6 -3 -1 1 3 5 6 8 9 11 12 14 15 16 17 18 20 21

9 -66 -16 -11 -7 -4 -2 0 2 4 6 8 9 11 12 13 15 16 17 19 20 21

10 -72 -17 -12 -8 -5 -3 -1 2 4 5 7 9 10 12 13 15 16 17 19 20 21

11 -77 -19 -14 -10 -7 -4 -1 1 3 5 7 8 10 12 13 15 16 17 19 20 21

12 -81 -21 -15 -11 -8 -5 -2 0 2 4 6 8 10 11 13 14 16 17 19 20 21

13 -86 -22 -16 -12 -9 -6 -3 -1 1 3 5 7 9 11 12 14 15 17 18 20 21

14 -90 -24 -18 -13 -10 -7 -4 -2 1 3 5 7 9 10 12 14 15 17 18 20 21

15 -95 -26 -19 -15 -11 -8 -5 -3 0 2 4 6 8 10 12 13 15 16 18 19 21

Figure 3: Part of the table of signi�cance scores �ln((1 � Q2;L(s))=Q2;L(s)) for N = 2. The

statistical scores are tabulated for di�erent values of the length L of the compared polypeptides

(vertical axis) and of the cumulated score s calculated with the substitution matrix PAM120

(horizontal axis).

2.2 The local selection procedure

For N given sequences, the selection procedure consists in �nding the anchor points (k1; :::; kN )

and their length L that maximize the local similarity measure LSc. As suggested by the KMR



algorithm used to �nd repeated words in strings [7, 8], this selection is performed recursively

using a growing number of sequences. This recursive organization reduces the computational

time-complexity of the search.

Let the optimal anchor points (k1; :::; km; L) relative to them �rst sequences be stored in a heap

H1. During the recurrent step, all the partial anchor points in H1 are compared to the sequence

m+ 1. For each extended anchor point (k1; :::; km; km+1; L), the boundaries (k1; :::; km+1) and

(k1+L�1; :::; km+1+L�1) are locally tuned by adding or subtracting to them the (m+1)-tuple

(l; :::; l) in order to maximize the score LSc. The best extended anchor points are transferred in

a heap H2. At the end of each recurrent step, H1 and H2 are exchanged until all the sequences

have been processed.

The heaps are implemented as arrays of pointers [2]. The entry indexed by the score s is

pointing on the linked list of anchor points with a local score s. By this way, the anchor points

are rapidly retrieved and directly sorted. The size of the heaps is proportional the number of

stored anchor points. This number has been empirically �xed to 400 in order to obtain the

majority of the optimal anchor points.

2.3 The global similarity criterion

The similarity is variable along the sequences. Two completely di�erent polypeptides can

be aligned if their match is consistent with strong similarities occurring in their sequential

neighborhood. Consequently, the criterion used to select of the anchor points has to integrate

some long range similarity score that measures the quality of alignments with allowed gaps.

In the case of pairwise sequence alignment, the retained similarity measure about an anchor

point (i; j) is de�ned as the score of the optimal alignment constrained to align position i and j.

The standard algorithm for pairwise sequence alignment is based on the principle of dynamic

programming [10]. Using a local recursive formula, this algorithm permits the construction of

the optimal alignment paths joining the beginning of the sequences to a pair of given sequential

positions. At the end of the process, optimal alignment path is backtracked starting from the

end of the sequences. However, this algorithm can be modi�ed in order to obtain all the scores

of the sub-optimal alignments [14]. This complete information is obtained by executing the

algorithm in both forward and backward directions onto the sequences.

Let FSc(i; j) be the partial score of the optimal path joining the beginning of the sequences to

the position (i; j), let BSc(i; j) be the optimal score calculated from the end of the sequences

to the position (i; j), the global score of the optimal path constrained to align positions i and

j is :

GSc(i; j) = FSc(i; j) +m(i; j) + BSc(i; j)

where m(i; j) is the score of the correspondence between positions i and j.

2.4 The global selection procedure

The resulting selection will give a list of the anchor points that maximize the global criterion :

GSc(k1; :::; kN ) =
NX

i=1

i�1X

j=1

GSc(ki; kj)



where N is the number of sequences, and GSc(ki; kj) is the similarity score for the positions ki
and kj of the sequences i and j.

The global selection procedure is a simpli�ed version of the local one. In this case, the length

of the anchor point has not to be optimized. Then, the score of (k1; :::; km+1) can be directly

calculated using the decomposition:

GSc(k1; :::; km+1) = GSc(k1; :::; km) +
mX

i=1

GSc(ki; km+1)

2.5 The multiple alignment algorithm

The selected anchor points are given by the union of the lists based on local and global sim-

ilarity criteria. These N -tuples will serve to limit the number of evaluated alignments. The

alignment algorithm consists in selecting an ordered set of N -tuples and constructing the align-

ment between the successive anchor points.

Dynamic programming can be formally expressed: let E be a set of states partially ordered by

a relation '<' describing the allowed transitions which are evaluated through a decomposable

function F . Then dynamic programming builds the subset of E, completely ordered according

to the relation '<' that maximizes the score corresponding to the sum of the transition costs

given by F (�gure 4). In the case of pairwise sequence alignment, the states are correspond-

ing to every possible pairs of sequential positions, the acceptable transitions are described by

mutations or insertions onto one of the sequence, and the evaluation function is de�ned by the

substitution matrix and the insertion penalties.

In the case of multiple sequence alignment, the states are corresponding to the selected anchor

points. A transition between two anchor points is acceptable if :

� The positions given by the anchor points are found in the same order for each sequences,

� The positions are equal or adjacent on at least one sequence.

2 sequences N sequences

States ~K = (k1; k2) ~K = (k1; : : : ; kN )

Allowed

transitions
~K < ~L

~L = (k1 + 1; k2 + 1) or
~L = (k1 + g; k2) or
~L = (k1; k2 + g)

8i; ki � li
and

9j; kj � lj � 1

Evaluation

function

F

Mutation and

insertion scores

Scores obtained

with hierarchical

dynamic programming

Figure 4: States, allowed transitions and evaluation functions of the pairwise and generalized

versions of the dynamic programming algorithm.

The second requirement is optional but its use limits the combinatorial complexity of the

algorithm. When the gaps between the positions of two successive anchor points are di�erent,

the hierarchical alignment algorithm is used to align the intermediate positions. A transition

is evaluated as the sum of the pairwise alignment scores of the segments localized between the



two anchor points.

Using the parameters de�ned in the previous paragraph, the generalized formula of dynamic

programming becomes:

Score(~L) = maxf ~K<~Lg[Score(
~K) + F ( ~K; ~L)]

where ~K and ~L are two anchor points.

2.6 Computational complexity

Let N be the number of sequences, L be the average length of a sequence, M be the number

of retained anchor points, then the complexity of the multiple sequence alignment algorithm

based on an exhaustive search [9] is O(LN ). It should be noted that this O(LN ) complexity is

broken down in the proposed method into successive phases which have the following polynomial

complexities:

� Search of segments with maximal local similarity : O(N 2L3).

� Construction of sub-optimal alignment paths : O(N2L2).

� Global selection procedure : O(NML).

� Multiple sequence alignment by hierarchical clustering : O(N2L2).

� Multiple sequence alignment by generalized dynamic programming: O(Nl2M 2=L), where

l is the average length of a transition.

The reduction of the computational time permits the alignment of up to 20 sequences of typical

length (around 200 amino acids) to be achieved in reasonable time.

3 Results

The generalized dynamic programming algorithm (GDP) has been tested on the alignment of

domains 1, 2, 3 and 4 of CD4 antigen with VL, CH3 and CH4 domains of immunoglobulins.

These proteins belong to the immunoglobulin superfamily, but some sequences are very weakly

related (less than 20% sequence identity). For this reason, classical sequence comparison meth-

ods lead to aligments which are wrongly shifted when compared with the correct structural

alignments.

The multiple alignment of the 18 sequences of the test set was obtained on a DECstation

5000/33 by only using 266 seconds of CPU time. The result is compared on the �gure 5 with

the alignment obtained with the widely used Clustal method based on hierarchical clustering

[5]. The correct alignment (according to the protein 3D superposition) of few key-residues is

underlined. Incorrectly aligned residues are highlighted with a bold and italic font.

The number of incorrectly aligned key-residues in the Clustal and GDP alignments are respec-

tively 27 and 14. Moreover, a visual inspection of the GDP alignment shows the wrongly shifted

residues are mainly located on the C, C 0 and D strands. These beta strands correspond to a

region with a high structural variability. Therefore, these particular errors can be explained by



the excessive structural divergence of the segments.

The only remaining error of the GDP alignment corresponds to the buried tryptophan of strand

B. In fact, the residue has been conserved while the corresponding strand has been shifted inside

the structural core. This particular case illustrates the frequently observed di�erence between

the optimal sequence alignment and the real structural superposition. It should be noted that

17 errors are remaining on the strands B and C of the Clustal alignment.

4 Conclusion

The proposed method should be useful to align more than three sequences with less than 35%

sequence identity on average. If the sequences show a high similarity, a simpler and faster

method for the alignment will be su�cient. On the other hand, if only two or three sequences

have to be aligned, the optimal solution given by the exhaustive dynamic programming method

will be preferred. The described algorithms can be easily transposed to nucleic acid sequences.

It should be noted however that lengthening the sequence by a factor three will have heavy

combinatorial consequences.

The evolution process based on successive divergences could explain the heterogeneity of the

similarity between sequences. An algorithm capable of managing partial anchor points is cur-

rently under development in order to increase the speed and the reliability of the process.

Also, additional exibilities to allow the user to introduce its own anchor points are under

investigation.
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Clustal V
Ig-HU-VL1   DIQM----TQSPSSLSASVGDRVTIT-CQASQDII--KYLNW -YQQTPGKAPKLLIYEAS
Ig-HU-VL2   ESVL----TQPPSA-SGTPGQRVTIS-CTGSATDIGSNSVIW -YQQVPGKAPKLLIYYND
Ig-HU-C3    PQVYTLPPSREE--MTKNQVSLT CLVKGFYPSDIA----VEW ESNGQPENNYKTT---PP
Ig-HU-C4    PSVFLFPPKPPDTLMISRTPEVT CVVVDVSHEDPV--QKFNWYVDGVQVHNAKTK---PR
CD4-HU-I    -----------KKVVLGKKGDTVELT-CTASQKKSIQ--FHW ---KNSNQIKILGNQG-S
CD4-MS-I    ---------QGKTLVLGKEGESAELP-CESSQKKITV--FTW ---KFSDQRKILGQHGKG
CD4-RA-I    -----------KTVVLGKEGGSAELP-CESTSRRSAS--FAW ---KSSDQKTILGYKNK-
CD4-HU-II   TA------NSDTHLLQGQ-----SLT LTLESPP--------------------------G
CD4-MS-II   TF------SPGTSLLQGQ-----SLT LTLDSNS-------------------------KV
CD4-RA-II   TF------NPGTRLLQGQ-----SLT LILDSNP-------------------------KV
CD4-HU-III  KA------SSIV-YKKEGEQVEFS FPLAFTVEKLTGSGELWWQAERASSSKSWITFDLKN
CD4-RA-III  AS------TSITAYKSEGESAEFS FPLNLGEES--LQGELRWKAEKAPSSQSWIPFSLKN
CD4-MS-III  QS------TAITAYKSEGESAEFS FPLNFAEEN--GWGELMWKAEKDSFFQPWISFSIKN
CD4-HU-IV   RA------TQ------------------LQKN-LT-------- CEVWGPTSPKLMLSLKL
CD4-MS-IV   KV------AQ------------------LN-NTLT-------- CEVMGPTSPKMRLTLKQ
CD4-RA-IV   KV------TQ------------------PDSNTLT-------- CEVMGPTSPKMRLILKQ

Ig-HU-VL1   NLQAGVP----SRFSGSGSG---TDYTF TISSLQPEDIATYYCQQY-QSLPYT-FGQGTK
Ig-HU-VL2   LLPSGVS----DRFSASKSG---TSASL AISGLESEDEADYYCAAWNDSLDEPGFGGGTK
Ig-HU-C3    VLDSDGSFFLY SKLTVDKSRW--------------QQGNVFSC SVMHEALHNH-YTQK-S
Ig-HU-C4    EQQYNSTYRVV SVLTV-LHQW--------------LDGKEYKC KVSNKALPAP-IEKTIS
CD4-HU-I    FLTKGPS-KLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQK-------EEVQ
CD4-MS-I    VLIRGGSPSQFDRFDSKKGAWEKGSFPLIINKLKMEDSQTYICELENRK-------EEVE
CD4-RA-I    LLIKG-SLELYSRFDSRKNAWERGSFPL IINKLRMEDSQTYVCELENKK-------EEVE
CD4-HU-II   SSPSVQ CRSPRGKNIQG----GK---TL SVSQLELQDSGTWTCTVLQNQ-KKVEF--KID
CD4-MS-II   SNPLTE CKHKKGKVVSG----SK---VL SMSNLRVQDSDFWNCTVTLDQ-KKNWF--GMT
CD4-RA-II   SDPPIE CKHKSSNIVKD----SK---AF STHSLRIQDSGIWNCTVTLNQ-KKHSF--DMK
CD4-HU-III  KEVSVKRVTQDPKLQMG----KKLPLHL TLPQALPQYAGSGNLTLALEA-KTGKLHQEVN
CD4-RA-III  QKVSVQKSTSNPKFQLS----ETLPLTL QIPQVSLQFAGSGNLTLTLD---RGILYQEVN
CD4-MS-III  KEVSVQKSTKDLKLQLK----ETLPLTL KIPQVSLQFAGSGNLTLTLD---KGTLHQEVN
CD4-HU-IV   ENKEAKVSKRE-----------------KAVW VLNPEAGMWQCLLS-DS-GQVLLESNIK
CD4-MS-IV   ENQEARVSEEQ-----------------KVVQ VVAPETGLWQCLLS-EG-DKVKMDSRIQ
CD4-RA-IV   ENQEARVSRQE-----------------KVIQ VQAPEAGVWQCLLS-EG-EEVKMDSKIQ

Generalized dynamic programming
Ig-HU-VL1   DIQ.MTQSPSSLSASVGDRVTITCQAS...QDII..KYLNW YQQTPGKAPKLLIYEASNL
Ig-HU-VL2   ESV.LTQPP.SASGTPGQRVTISCTGS...ATDIGSNSVIW YQQVPGKAPKLLIYYNDLL
Ig-HU-C3    PQVYTLPPSREEMTKN..QVSLTCLVK.GFYP..SDIAVEW ESNGQPE......N NYKTT
Ig-HU-C4    PSVFLFPPKPKDTLMISRTPEVTCVVV.DVSHEDPQVKFNWYVDGVQV......H NAKTK
CD4-HU-I    ..KKVVLGK......KGDTVELTCTAS...QK..KSIQFHW KNSNQIK.....ILGNQGS
CD4-MS-I    QGKTLVLGK......EGESAELPCESS...QK..KITVFTW KFSDQRK.....ILGQHGK
CD4-RA-I    ..KTVVLGK......EGGSAELPCEST...SR..RSASFAW KSSDQKT.....ILGYKNK
CD4-HU-II   TAN......SDTHLLQGQ..SLTLTLESPP............GSSPSV.......Q CRSP
CD4-MS-II   TFS......PGTSLLQGQ..SLTLTLDSNS...........KVSNPLT.......E CKHK
CD4-RA-II   TFN......PGTRLLQGQ..SLTLILDSNP...........KVSDPPI.......E CKHK
CD4-MS-III  QSTAITAYKS.....EGESAEFSFPLNFAEEN..GWGE LMWKAEKDSFFQPWISFSIKNK
CD4-HU-III  KASSI.VYKK.....EGEQVEFSFPLAFTVEKLTGSGE LWWQAERASSSKSWITFDLKNK
CD4-RA-III  ASTSITAYKS.....EGESAEFSFPLNLGEESL..QGE LRWKAEKAPSSQSWIPFSLKNQ
CD4-HU-IV   RAT............QLQ.KNLTCEVW...GPTSPKLMLSL KLENKEA............
CD4-MS-IV   KVA............QLN.NTLTCEVM...GPTSPKMRLTL KQENQEA............
CD4-RA-IV   KVT............QPDSNTLTCEVM...GPTSPKMRLIL KQENQEA............

Ig-HU-VL1   QAGVP..S.....RFSGSG...SGTDYTF TISSLQPEDIATYYCQQYQS..LPYTFGQGT
Ig-HU-VL2   PSGVS..D.....RFSASK...SGTSASL AISGLESEDEADYYCAAWNDSLDEPGFGGGT
Ig-HU-C3    PPVLDSDG.....SFFLY S........KL TVDKSRWQQGNVFSCSVMHEALHNHYT..QK
Ig-HU-C4    PREQQYNS.....TYRVV S........VL TVLHQNWLDGKEYKCKVSNKALP.API..EK
CD4-HU-I    ..FLTKGPSKLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYIC EV..ED.QKE....EV
CD4-MS-I    GVLIRGGSPSQFDRFDSKKGAWEKGSFPLIINKLKMEDSQTYICEL..EN.RKE....EV
CD4-RA-I    .LLIK.GSLELYSRFDSRKNAWERGSFPL IINKLRMEDSQTYVCEL..EN.KKE....EV
CD4-HU-II   RGKNIQGG..................KTLSVSQLELQDSGTWTC TVLQNQ.KKVEF..KI
CD4-MS-II   KGKVVSGS..................KVLSMSNLRVQDSDFWNC TVTLDQ.KKNWF..GM
CD4-RA-II   SSNIVKDS..................KAFSTHSLRIQDSGIWNC TVTLNQ.KKHSF..DM
CD4-MS-III  EVSVQKST..KDLKLQLKE....TLPLTL KIPQVSLQFAGSGNLTLTLD...KGTLHQEV
CD4-HU-III  EVSVKRVT..QDPKLQMGK....KLPLHL TLPQALPQYAGSGNLTLALEA.KTGKLHQEV
CD4-RA-III  KVSVQKST..SNPKFQLSE....TLPLTL QIPQVSLQFAGSGNLTLTLD...RGILYQEV
CD4-HU-IV   ..KVSKRE.....................KAVW VLNPEAGMWQCLLS.DS.GQVLL..ES
CD4-MS-IV   ..RVSEEQ.....................KVVQ VVAPETGLWQCLLS.EG.DKVKM..DS
CD4-RA-IV   ..RVSRQE.....................KVIQ VQAPEAGVWQCLLS.EG.EEVKM..DS

Figure 5: Comparison between Clustal V and the GDP algorithm (see˝text).


