
Fast A
�
Algorithms for Multiple Sequence Alignment

Takahiro Ikeda Hiroshi Imai

ike@is.s.u-tokyo.ac.jp imai@is.s.u-tokyo.ac.jp

Department of Information Science, Faculty of Science,

University of Tokyo

7{3{1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

The multiple alignment of the sequences of DNA and proteins is applicable to various

important �elds in molecular biology. Although the approach based on Dynamic Pro-

gramming is well-known for this problem, it requires enormous time and space to obtain

the optimal alignment. On the other hand, this problem corresponds to the shortest

path problem and the A� algorithm, which can e�ciently �nd the shortest path with an

estimator, is usable.

This paper directly applies the A� algorithm to multiple sequence alignment problem

with more powerful estimator in more than two dimensional case and discusses the im-

provement of this approach utilizing an upper bound of the shortest path length. The

algorithm to provide the upper bound is also proposed in this paper.

1 Introduction

The multiple sequence alignment is the problem to �nd the alignment of multiple sequences

with highest score due to a given scoring criterion between characters. The solution of this

problem for multiple sequences of DNA and proteins represent the similarity of them and are

applicable to various important �elds such as the prediction of three dimensional structures of

proteins and the inference of phylogenetic tree in molecular biology.

This problem can be solved by �nding the shortest path on some directed acyclic graph.

Suppose that Sk denotes the k-th sequence whose length is nk = O(n) and d denotes the

dimension, the number of sequences. Then in the directed acyclic graph G = (V;E) such that

V = f(x1; : : : ; xd) j xi = 0; 1; : : : ; nig and E = [e2f0;1gdf(v; v+ e) j v; v+ e 2 V; e 6= 0g, a path
from the vertex s = (0; : : : ; 0) to the vertex t = (n1; : : : ; nd) corresponds to an alignment of

sequences.

池田 崇博, 今井 浩: 東京大学理学部情報科学科, 〒 113 東京都文京区本郷 7{3{1



A W V L

K

G

W

s

t

Figure 1: The graph for the alignment of two sequences, KGW and AWVL. The path from s to t

drawn as the bold line represents the alignment of KGW-- and -AWVL.

For instance, in two dimensional case, the graph G is constructed as Figure 1. In this graph,

each row and column correspond to each character of �rst and second sequences, respectively. A

diagonal edge represents a match between two characters and both horizontal and vertical edges

represent insertions of gaps. Therefore �nding the optimal alignment is equivalent to �nding the

shortest path from the top left vertex to the bottom right vertex on an appropriate assignment

of edge length such that matching cost of two characters, which denotes less similarity of them,

is assigned to each diagonal edge and the gap cost is assigned to each horizontal and vertical

edge. If matching scores representing the similarity of characters are given, matching costs are

obtained by reversing their signs.

In more than two dimensional case, the sum of all scores for pairwise sequence alignments is

used as the score for the multiple sequence alignment in general. This corresponds to de�ning

each edge length in the original graph G = (V;E) as the sum of all corresponding edge length

in the graphs for pairwise alignments. Let Gij = (Vij; Eij) denote the graph for the alignment

of Si and Sj (i < j), that is, Vij = fvij = (xi; xj) j v = (x1; : : : ; xd) 2 V g and Eij =

f(uij; vij) j (u; v) 2 E; uij 6= vijg. Then the length of edge (u; v) in E is de�ned as l(u; v) =P
1�i<j�d l(uij; vij) where l(uij ; vij) denotes the length of edge (uij ; vij) in graph Gij and has

been de�ned.

The method based on Dynamic Programming (DP) is a faithful approach for multiple

sequence alignment problem. This method searches all vertices in the graph and has O(nd)

time and space complexity. Although this approach is e�ective for small dimension of two or

three, it is impractical to apply this method directly to higher dimensional problem because nd

is enormous even for a little larger d. In order to avoid this tendency, approximate methods are

used for higher dimensional alignment problem since it is di�cult to bound the search space

without lack of optimality of the result alignment.

On the other hand, the A� algorithm, which is the well-known heuristic search method in

Arti�cial Intelligence, always �nds the optimal alignment with less vertices searched [2, 4]. It

reduces unnecessary search by utilizing the heuristic estimate for the shortest path length from

each vertex to the destination.

The concept of this algorithm has been used in multiple sequence alignment problem to

bound the search space of DP [5]. Although the A� algorithm is incompatible with DP, this

bounding method overcomes this problem by using an upper bound of the shortest path length.



Therefore, this method requires additional time to obtain an upper bound compared with the

original A� algorithm and besides its search space is not less than that of the original A�

algorithm.

On the other hand, the A� algorithm can be directly used in �nding the shortest path on

the graph for multiple sequence alignment. In two dimensional case, the A� algorithm has been

directly applied and its e�ectiveness has been reported [1](see also [3]).

This paper focuses on more than two dimensional case, and shows the A� algorithm can

�nd the shortest path by only searching su�ciently small space in the actual application to

protein sequence alignment. This paper further improves this approach in order to decrease

the necessary space using an upper bound for the shortest path length. This algorithm is never

inferior to the approach based on DP using an upper bound with regard to the necessary space.

This paper also proposes an e�cient approximate algorithm which provides the almost optimal

alignment with less necessary time and space. This algorithm is applicable to �nding an upper

bound as well.

2 The A� Algorithm

The A� Algorithm �nds the shortest path from s to t e�ciently when all edge length is non-

negative. It utilizes a heuristic estimate for the shortest path length from each vertex to t,

which must be at most the actual shortest path length, and reduces the search space. Let h(v)

denote this estimate value for a vertex v. Then the outline of the A� Algorithm is described as

follows [2, 4]:

1. Let U be the set fsg and p(s) be zero.

2. Find the vertex u which has the minimum value of p(v) + h(v) in U and remove u from

U . If u equals to t, then halt.

3. For all vertices v such that (u; v) is in E, if p(u)+ l(u; v) is less than p(v), replace the path

from s to v with the path from s to u and the edge (u; v), and let p(v) be p(u) + l(u; v),

and add v to U if v is not in U .

4. Go to step 2.

This algorithm is a type of the Dijkstra method using p(v) + h(v) instead of p(v) as the

criterion of the search order for vertex v. The potential p(v) represents the temporary shortest

path length from s to v and the expression p(v) + h(v) represents the temporary estimate for

the shortest path length from s to t via v. Hence it searches vertices near the shortest path

preferentially and reduces the number of vertices to be searched with an appropriate estimator.

In this algorithm, set U always keeps candidates for the vertex to be selected next and may

be compared to the wave front of the search. This set is managed with the operations in steps

2 and 3. This series of operations is called an expansion of the vertex.

In the A� algorithm, the shortest path from s is not always �xed for the expanded vertex

unlike the Dijkstra method, that is, shorter paths may be found in future search for such

vertices. This induces the operation to return the expanded vertex to U in step 3 and increases

the expansions of vertices in the A� algorithm. However, this disadvantage of the A� algorithm



is due to the feature of the estimator and can be eliminated if the estimator is dual feasible as

the following de�nition.

De�nition 1 The estimator h is dual feasible if and only if h satis�es the following condition

for each edge (u; v) in E:

l(u; v) + h(v) � h(u):

If the estimator is dual feasible, the A� algorithm is the same as the Dijkstra method except

for the criterion of the search order. In fact, the A� algorithm can be transformed into the

Dijkstra method by modifying edge length as the following proposition.

Proposition 1 The Dijkstra method with the edge length l0 modi�ed as follows is equivalent to

the A� algorithm with the original edge length l utilizing a dual feasible estimator h:

l0(u; v) = l(u; v) + h(v)� h(u):

Proof: Since l0(u; v) is non-negative from dual feasibility of h, it is possible to use l0(u; v) as

the length of an edge (u; v) in the Dijkstra method. Let P (s; v) be the temporary path from

s to a vertex v. Then the following formula is satis�ed on the potential of arbitrary expanded

vertex v in the Dijkstra method:

p(v) =
X

(x;y)2P (s;v)

l0(x; y) =
X

(x;y)2P (s;v)

l(x; y) + h(v)� h(s):

Notice that h(s) is a constant and
P

(x;y)2P (s;v) l(x; y) denotes the potential of v in the A�

algorithm. This indicates the Dijkstra method using modi�ed edge length is equivalent to the

A� algorithm. 2

In this modi�cation, each new edge length is always positive only if the estimator is dual

feasible. This means the Dijkstra method transformed from A� algorithm can work correctly

with a dual feasible estimator even if the graph has negative length edges.

3 The A� Algorithm for Multiple Sequence Alignment

3.1 An Indirect Application of the A
�
Algorithm

As the application of the A� algorithm to multiple sequence alignment problem, Spouge has

proposed the approach to bound the search space using the feature of the A� algorithm [5].

This approach is based on the idea to apply DP to only vertices to be searched by the A�

algorithm and can be regarded as the indirect application of the A� algorithm. This section

reviews this approach and discusses its merits and demerits.

Let L�(u; v) denote the shortest path length from u to v and Lu(u; v) denote its upper

bound. Spouge has shown that searching only such vertices v that p(v) + h(v) � Lu(s; t) is

su�cient for �nding the shortest path from s to t. This is due to the fact that the A� algorithm

expands the vertex v in order of the value p(v) + h(v) which is the estimate for the shortest

path length from s to t via v and does not exceed the actual shortest path length L�(s; t). This

means any vertex v expanded by the A� algorithm satis�es p(v)+h(v) � L�(s; t) � Lu(s; t) and



guarantees the shortest path from s to t only passes such vertex v that p(v) + h(v) � Lu(s; t).

Then applying DP to such vertices completes the algorithm. This paper calls this algorithm as

enhanced DP in convenience.

This approach can be regarded as coercive implementation of the A� algorithm with DP.

The merit of this approach is that it can omit the management of set U in the A� algorithm.

The A� algorithm requires set U in order to maintain the search order and uses the operations

to extract the element with minimum key and to decrease the key of speci�ed element for set U .

These operations take O(log jU j) time even if a binary heap is utilized as the implementation of

U . On the other hand, DP searches vertices in order speci�ed in advance and does not require

additional data such as U .

The demerit of enhanced DP is that it uses an upper bound of the shortest path length

in bounding its search space. Although the e�ect of this bounding is due to tightness of the

upper bound, it is expensive to obtain a tighter upper bound. If it takes a lot of time to

calculate an upper bound, the merit of enhanced DP will be canceled out. In addition to this,

the number of searched vertices in enhanced DP is larger than the number of expanded vertices

in the A� algorithm unless the upper bound is tight. These numbers correspond to the number

of iterations in each algorithm, and are proportional to the execution time of each algorithm.

As the upper bound becomes looser, the di�erence between them becomes larger. Although

Spouge has proposed to modify the upper bound Lu(s; t) into L�(s; v)+Lu(v; t) dynamically at

some vertex v in order to make the upper bound tighter, it requires still more execution time.

These demerits of enhanced DP are due to the incompatibility between DP and the A�

algorithm. Although the essence of the A� algorithm is in its search order, it is broken in the

search with enhanced DP. In this way, enhanced DP loses the feature of the A� algorithm

although it gains the feature of DP the A� algorithm does not have.

3.2 A Direct Application of the A
�
Algorithm

In consideration of the discussion in the previous section, this paper takes an approach to apply

the A� algorithm directly to the graph for multiple sequence alignment. This approach can omit

the calculation of the upper bound and keep the expanded vertices less although it requires

additional time and space to maintain the candidates for the vertex to be expanded next. This

section discusses this approach with attention to the estimator of the A� algorithm.

For two dimensional problem, the A� algorithm has been directly applied [1]. In these cases,

the estimators are constructed from information on the alignment of characters. Although

this construction is reasonable and appropriate for two dimensional problem, more powerful

estimator can be constructed for more than two dimensional problem. The e�ciency of the A�

algorithm strongly depends on the performance of the estimator. More exact estimator reduces

unnecessary search and enables the A� algorithm to �nd the shortest path faster.

This paper focuses on more than two dimensional problem and adopts the same estimator

has been proposed for enhanced DP by Spouge [5]. The following h denotes this estimator:

h(v) =
X

1�i<j�d

L�(vij; tij):

Recall that the length of a path in a multiple alignment problem is de�ned as the sum of all

length of corresponding paths in pairwise alignment problems. This estimator uses the shortest



path length in the pairwise alignment problem as the estimate for the length of the path

corresponding to the shortest path in the multiple alignment problem. In higher dimensional

problem, necessary time and space for solving pairwise problems is negligible compared with

those for solving a multiple problem and does not increase time and space complexity. Therefore

it is possible to use the estimator which provides more exact estimates utilizing information on

all pairwise alignments.

It is clear that each estimate h(v) does not exceed the actual shortest path length from v

to t and this estimator h is available in the A� algorithm. Moreover, the following proposition

is satis�ed on dual feasibility of h.

Proposition 2 This estimator h is dual feasible.

Proof: For any edge (u; v) in E,

l(u; v) + h(v) =
X

1�i<j�d

(l(uij ; vij) + L�(vij ; tij)) �
X

1�i<j�d

L�(uij; tij) = h(u):

This is the de�nition of dual feasibility itself. 2

Hence the A� algorithm using this estimator is applicable to graphs which have negative

length edges with the transformation based on Proposition 1. Finally, this paper proposes the

following approach.

1. For arbitrary pair of i and j satisfying 1 � i < j � d, apply DP to graph Gij from vertex

tij and calculate L�(vij; tij) for any vij in Vij.

2. Apply the Dijkstra method to graph G from vertex s with the length of edge (u; v)

modi�ed as l(u; v) + h(v)� h(s) where h(v) =
P

1�i<j�d L
�(vij; tij).

In order to investigate the actual e�ciency of this approach, the experiment aligning actual

sequences of proteins has been performed. In this experiment, elongation factor TU (EF-TU)

of Haloarcula marismortui (Hal) and Methanococcus vannielii (Met), and elongation factor 1�

(EF-1�) of Thermoplasma acidophilum (Tha), Thermococcus celer (Thc), Sulfolobus acidocal-

darius (Sul), Entamoeba histolytica (Ent) and Plasmodium falciparum (Pla) have been used as

proteins and the optimal alignments of �rst d sequences of them have been calculated based on

this approach for 3 � d � 7. The PAM-250 matrix has been used in assigning edge length with

each sign of score reversed. With regard to the gap penalty, the minimum value in the PAM-250

matrix, �8, has been adopted. Figure 2 illustrates the result alignment in seven dimensional

case. Table 1 displays the number of vertices in the graph (jV j) and the number of expanded

vertices (#Expanded) and the number of visited vertices (#Visited) and the maximum size

of set U (max jU j), and the execution time by SPARC Station 10 with 64 megabytes memory

(Time). This paper regards the A� algorithm visits a vertex when the vertex is added to U .

Then the number of visited vertices corresponds to the necessary space for the A� algorithm.

The result of this experiment shows this approach can �nd the shortest path by only ex-

panding signi�cantly small number of vertices while the number of vertices in the graph runs

into astronomical �gures. This indicates the estimator adopted in this approach provides rather

exact estimate su�ciently close to the actual shortest path length. However, execution time

does not reect the number of expanded vertices.



Table 1: The result of the experiment aligning actual sequences of proteins based on the

approach to apply the A� algorithm directly.

d 3 4 5 6 7

jV j 7:6� 107 3:3� 1010 1:4� 1013 6:1� 1015 2:7� 1018

#Expanded 465 950 2,731 5,942 48,521

#Visited 3,082 9,094 32,219 104,267 838,812

max jU j 2,618 8,145 29,489 98,326 790,292

Time (sec.) 6 9 19 55 12,592

Table 2: The result of the experiment aligning actual sequences of proteins with enhanced A�.

d 3 4 5 6 7

#Visited 465 979 2,804 6,032 48,998

max jU j 12 374 1,621 3,784 34,898

Time (sec.) 6 9 15 31 319

This phenomenon is mainly due to the maximum size of U . In this experiment, a binary

heap is utilized as the implementation of set U . Although this implementation is su�ciently

e�cient compared with an array or a list, it requires O(log jU j) time in extracting the element

with minimum key and in decreasing the key of speci�ed element with this implementation.

The excessive increase of execution time is also due to the increase of the necessary space for

the algorithm. This causes the shortage of real memory and leads to swapping memory. This

inuence is observed particularly in seven dimensional case. These two factors arise from the

fact that the A� algorithm visits all adjacent vertices when it expands a vertex. This induces

unnecessary addition of vertices to U and increases the necessary space blindly.

In order to weaken this undesirable tendency, this paper proposes to utilize the upper bound

for the shortest path length as enhanced DP. Recall that the A� algorithm expands only such

vertex v that p(v)+h(v) � L�(s; t) � Lu(s; t). This indicates the vertex violates this condition

stays in U to the end if the vertex is visited by the A� algorithm. Hence it is meaningless and

needless to add such vertex that p(v) + h(v) > Lu(s; t) to U . This paper calls the algorithm

based on this concept as enhanced A� in convenience.

The condition to bound vertices in enhanced A� is the same as that in enhanced DP.

Therefore the number of visited vertices in enhanced A� never exceeds the number of searched

vertices in enhanced DP and enhanced A� is no less than enhanced DP with regard to the

necessary space.

Table 2 displays the result of the experiment applying enhanced A� to the same sequences

of proteins in the previous experiment. In this experiment, the actual shortest path length has

been utilized as the upper bound in order to examine the best possible case. Each execution

time does not contain time to obtain the upper bound.

The result shows this approach su�ciently prevents the A� algorithm from adding unneces-

sary vertices to U . The number of visited vertices is close to the number of expanded vertices



1 80

Hal MS-DEQHQNLAIIGHVDHGKSTLVGRLLYETGSVPEHVIEQHKEEAEEKGKGGFEFAYVMDNLAEERERGVTIDIAHQEF

Met MAKTKPILNVAFIGHVDAGKSTTVGRLLLDGGAIDPQLIVRLRKEAEEKGKAGFEFAYVMDGLKEERERGVTIDVAHKKF

Tha MASQKPHLNLITIGHVDHGKSTLVGRLLYEHGEIPAHIIEEYRKEAEQKGKATFEFAWVMDRFKEERERGVTIDLAHRKF

Thc MAKEKPHINIVFIGHVDHGKSTTIGRLLFDTANIPENIIKKFE-EMGEKGK-SFKFAWVMDRLKEERERGITIDVAHTKF

Sul MS-QKPHLNLIVIGHVDHGKSTLIGRLLMDRGFIDEKTVKEAEEAAKKLGKDSEKYAFLMDRLKEERERGVTINLSFMRF

Ent MPKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDQRTIEKFEKESAEMGKGSFKYAWVLDNLKAERERGITIDISLWKF

Pla MGKEKTHINLVVIGHVDSGKSTTTGHIIYKLGGIDRRTIEKFEKESAEMGKGSFKYAWVLDKLKAERERGITIDIALWKF

81 160

Hal STDTYDFTIVDCPGHRDFVKNMITGASQADNAVLVVAA-D---D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMDLVD-

Met PTAKYEVTIVDCPGHRDFIKNMITGASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMDTVN-

Tha ETDKYYFTLIDAPGHRDFVKNMITGTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSP

Thc ETPHRYITIIDAPGHRDFVKNMITGASQADAAVLVVAV-T---D-GV-MP-QTKEHAFLARTLGINNILVAVNKMDMVN-

Sul ETRKYFFTVIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSAEGQTREHIILSKTMGINQVIVAINKMDLADT

Ent ETSKYYFTIIDAPGHRDFIKNMITGTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMDAIQ-

Pla ETPRYFFTVIDAPGHKDFIKNMITGTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMDTVK-

161 240

Hal -YGESEYKQVVEEV-KDLLTQVRFDSENAKFIPVSAFEGDNIAEESEHTGWYDGEILLEALNELPAPEPPTDAPLRLPIQ

Met -FSEADYNELKKMIGDQLLKMIGFNPEQINFVPVASLHGDNVFKKSERNPWYKGPTIAEVIDGFQPPEKPTNLPLRLPIQ

Tha PYSEKRYNEVKADA-EKLLRSIGFK-D-ISFVPISGYKGDNVTKPSPNMPWYKGPTLLQALDAFKVPEKPINKPLRIPVE

Thc -YDEKKFKAVAEQV-KKLLMMLGYK-N-FPIIPISAWEGDNVVKKSDKMPWYNGPTLIEALDQMPEPPKPTDKPLRIPIQ

Sul PYDEKRFKEIVDTV-SKFMKSFGFDMNKVKFVPVVAPDGDNVTHKSTKMPWYNGPTLEELLDQLEIPPKPVDKPLRIPIQ

Ent -YKQERYEEIKKEI-SAFLKKTGYNPDKIPFVPISGFQGDNMIEPSTNMPWYKGPTLIGALDSVTPPERPVDKPLRLPLQ

Pla -YSEDRYEEIKKEV-KDYLKKVGYQADKVDFIPISGFEGDNLIEKSDKTPWYKGRTLIEALDTMQPPKRPYDKPLRIPLQ

241 320

Hal DVYTISGIGTVPVGRVETGILNTGDNVSFQPSD-V----S-GEVKTVEMHHEEVPKAEPGDNVGFNVRGVGKDDIRRGDV

Met DVYTITGVGTVPVGRVETGIIKPGDKVVFEPAG-A----I-GEIKTVEMHHEQLPSAEPGDNIGFNVRGVGKKDIKRGDV

Tha DVYSITGIGTVPVGRVETGVLKPGDKVIFLPAD-K----Q-GDVKSIEMHHEPLQQAEPGDNIGFNVRGIAKNDIKRGDV

Thc DVYSIKGVGTVPVGRVETGVLRVGDVVIFEPASTIFHKPIQGEVKSIEMHHEPMQEALPGDNIGFNVRGVGKNDIKRGDV

Sul EVYSISGVGVVPVGRIESGVLKVGDKIVFMPVG-K----I-GEVRSIETHHTKIDKAEPGDNIGFNVRGVEKKDVKRGDV

Ent DVYKISGIGTVPVGRVETGILKPGTIVQFAPSG-V----S-SECKSIEMHHTALAQAIPGDNVGFNVRNLTVKDIKRGNV

Pla GVYKIGGIGTVPVGRVETGILKAGMVLNFAPSA-V----V-SECKSVEMHKEVLEEARPGDNIGFNVKNVSVKEIKRGYV

321 400

Hal CGPADDPPSVA--ET-FQAQIVVMQHPSVITEGYTPVFHAHTAQVACTVESIDKKIDPSSGEVAE-ENPDFIQNGDAAVV

Met LGHTTNPPTVA--TD-FTAQIVVLQHPSVLTDGYTPVFHTHTAQIACTFAEIQKKLNPATGEVLE-ENPDFLKAGDAAIV

Tha CGHLDTPPTVV--KA-FTAQIIVLNHPSVIAPGYKPVFHVHTAQVACRIDEIVKTLNPKDGTTLK-EKPDFIKNGDVAIV

Thc AGHTNNPPTVVRPKDTFKAQIIVLNHPTAITVGYTPVLHAHTLQVAVRFEQLLAKLDPRTGNIVE-ENPQFIKTGDSAIV

Sul AGSVQNPPTVA--DE-FTAQVIVIWHPTAVGVGYTPVLHVHTASIACRVSEITSRIDPKTGKEAE-KNPQFIKAGDSAIV

Ent ASDAKNQPAVG-CED-FTAQVIVMNHPGQIRKGYTPVLDCHTSHIACKFEELLSKIDRRTGKSMEGGEPEYIKNGDSALV

Pla ASDTKNEPAKG-CSK-FTAQVIILNHPGEIKNGYTPLLDCHTSHISCKFLNIDSKIDKRSGKVVE-ENPKAIKSGDSALV

401 455

Hal TVRPQKPLSIEPSSEIPELGSFAIRDMGQTIAAGKV-------LG-VN-E----R

Met KLIPTKPMVIESVKEIPQLGRFAIRDMGMTVAAGMA-------IQ-VTAK--N-K

Tha KVIPDKPLVIEKVSEIPQLGRFAVLDMGQTVAAGQC-------ID-LE-K----R

Thc VLRPTKPMVIEPVKEIPQMGRFAIRDMGQTVAAGMV-------IS-IQ-K--A-E

Sul KFKPIKELVAEKFREFPALGRFAMRDMGKTVGVGVI-------ID-VKPRKVEVK

Ent KIVPTKPLCVEEFAKFPPLGRFAVRDMKQTVAVGVV-------KA-VT------P

Pla SLEPKKPMVVETFTEYPPLGRFAIRDMRQTIAVGIINQLKRKNLGAVTAKAPAKK

Figure 2: The optimal alignment of EF-TU and EF-1� calculated with the A� algorithm.



Table 3: The result of the experiment aligning seven sequences of proteins with A algorithm.

k 1 1.001 1.005 1.01 1.05 1.1

Score 24,912 24,912 24,903 24,880 24,692 24,060

#Expanded 48,521 965 617 492 456 456

#Visited 838,812 77,384 64,364 58,495 55,935 55,686

max jU j 790,292 76,420 63,748 58,004 55,480 55,231

Time (sec.) 12,592 40 34 32 31 31

in all cases. The e�ciency of the A� algorithm is signi�cantly improved especially for higher

dimensional case.

Although there remains the problem how to obtain a tighter upper bound in su�ciently

small time, the algorithm proposed in the next section provides the solution for this problem.

4 An Approximate Method Based on the A Algorithm

The A� algorithm with no condition that each estimate must be at most the actual shortest

path length is called as the A algorithm. Although the A algorithm cannot necessarily �nd the

shortest path, it visits less vertices than the A� algorithm with an appropriate estimator.

This paper proposes to use the A algorithm with the following estimator h in calculating

an upper bound for the shortest path where k is some constant:

h(v) = k
X

1�i<j�d

L�(vij ; tij):

This estimator is k times as large as the estimator adopted in the A� algorithm. Then this

algorithm regards the cost from a vertex to t k times more important than the cost from s to

the vertex and searches vertices near t preferentially. Although this concept is not applicable

to the graph with negative length edges, such a graph is adaptable to this algorithm with an

appropriate regulation for each edge length (see [1]).

Table 3 displays the result of the application of this algorithm to seven sequences of proteins

used in the previous section. The case that k = 1 corresponds to applying the A� algorithm

and the score for this case is the optimal. The result shows the e�ectiveness of this algorithm.

While both expanded vertices and visited vertices are reduced with a little larger k than unity,

the score of the alignment decreases little. Particularly in the case k = 1:001, the optimal

alignment is obtained in 40 seconds with only 965 vertices expanded. Although it is not certain

that the obtained alignment is the optimal, enhanced A� e�ciently �nds the actual optimal

alignment with the length of the path corresponding to the obtained alignment as an upper

bound for the shortest path length.

5 Conclusion

In this paper, some algorithms based on the A� algorithm have been proposed for more than

two dimensional multiple sequence alignment problem.



The �rst algorithm is the A� algorithm with the estimator utilizing the information on

the result of all pairwise problems. The result of the experiment shows only few vertices are

expanded in this algorithm while enormous amount of vertices conceptually exist in the graph.

However, the number of visited vertices increases excessively as the dimension becomes higher.

This phenomenon a�ects the e�ciency of the algorithm since it increases the heap size and

the necessary space. As for the heap size, such method as used in the bin sort is applicable

to the search with the A� algorithm and can improve time complexity. This method will be

implemented. On the other hand, the necessary space is essential to the A� algorithm and

cannot be decreased in regular way.

The second algorithm overcomes this problem utilizing the upper bound of the shortest path

length. This problem is due to the feature of the A� algorithm that it visits the all adjacent

vertices to the vertex it expands. The second algorithm does not visit unnecessary vertices

and keeps the necessary space su�ciently small. The same e�ect may be obtained with the

information on all pairwise problems instead of an upper bound. This idea will be further

shaped up in future.

The third algorithm is an approximate method based on the A algorithm, which provides

the almost optimal alignment in extremely small time. This algorithm is useful not only as it

is but also as the method to calculate an upper bound. An elegant measure for negative length

edges and the criterion for the value of the parameter k remain open as future works.

Acknowledgment

This work was supported in part by the Grant-in-Aid on Priority Areas \Genome Informatics"

of the Ministry of Education, Science and Culture of Japan.

References

[1] S. Araki, M. Goshima, S. Mori, H. Nakashima, S. Tomita, Y. Akiyama, and M. Kanehisa,

\Application of Parallelized DP and A� Algorithm to Multiple Sequence Alignment," Proc.

Genome Informatics Workshop IV, 1993, pp.94{102.

[2] P. E. Hart, N. J. Nillson, and B. Rafael, \A Formal Basis for the Heuristic Determination

of Minimum Cost Paths," IEEE Trans. Sys. Sci. and Cyb. SSC-4, 1968, pp.100{107.

[3] G. Shibayama and H. Imai, \Finding K-best Alignment of Multiple Sequences," Proc.

Genome Informatics Workshop IV, 1993, pp.120{129.

[4] Y. Shirai and J. Tsuji, Arti�cial Intelligence, Iwanami Course: Information Science vol.22,

Iwanami, Tokyo, 1982 (in Japanese).

[5] J. L. Spouge, \Speeding Up Dynamic Programming Algorithms for Finding Optimal Lat-

tice Paths," SIAM J. Appl. Math. 49, 1989, pp.1552{1566.


