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Abstract

Recently, several attempts have been made at applying machine learning method to pro-

tein motif discovery, but most of these methods require negative examples in addition

to positive examples. This paper proposes an e�cient method for learning protein mo-

tif from positive examples. A regular pattern is a string consisting of constant symbols

and mutually distinct variables, and represents the set of the constant strings obtained

by substituting nonempty constant strings for variables. Regular patterns and their lan-

guages are called extended if empty substitutions are allowed. Our learning algorithm,

called k-minimal multiple generalization (k-mmg), �nds a minimally general collection of

at most k regular patterns that explains all the positive examples. We have implemented

this algorithm for subclasses for regular patterns and extended regular patterns where

the number of variables are bounded by a small constant, and run experiments on pro-

tein data taken from GenBank and PIR databases. We incorporate three heuristics into

these algorithms for controlling nondeterministic choices. The experiments show that the

k-mmg algorithm can very quickly �nd a hypothesis on the computers in practice, and

that the results of our system are comparable with the results of learning method from

positive and negative data.

1 Introduction

A motif is a pattern common to the essential parts in proteins which share a function. It is

one of the most important problems in Molecular Biology to capture a motif from amino acid
sequences. Recently, several attempts have been made at applying machine learning method

to protein motif discovery [2, 3, 9], but most of these methods require negative examples in
addition to positive examples. For example, Arikawa et al. [2] reported a knowledge acquisition

system for �nding motifs from amino acid sequences based on Elementary Formal Systems [4].
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A set S of positive examples

e1 WLVNFIIVIMVFILFLVGLYLL

e2 VALVTITLWFMAWTPYLVINCMGL

e3 GFLAASALGVVMITAALAGIL

e4 SKILGLFTLAIMIISCCGNGVVVYI

e5 MTIKTSIMKILFIWMMAVFWT

e6 IFYSIFVYYIPLFLICYSYWFIIAAVSA

e7 GCGSLFGCVSIWSMCMIAFDRYNVIV

A 3-mmg P of S

p1 *F*M*LV*L

p2 *FL*V*A*

p3 *LF*M*V*

Table 1: An example of k-minimal multiple generalizations for k = 3, where `�' denotes a

variable in a pattern. Regular patterns p1, p2, and p3 in the 3-mmg P of S cover subsets

fe1; e2g, fe3; e6g, and fe4; e5; e7g of the set S of positive examples, respectively.

Their system produced a set of regular patterns of high accuracy from randomly chosen positive

and negative examples. This paper proposes an e�cient method for learning protein motif from
positive examples.

A regular pattern [1, 11] is a string p of the form w0x1w1x2 : : : xnwn (n � 0) consisting of
constant strings w0; w1; : : : ; wn and mutually distinct variables x1; : : : ; xn, and represents the

language L(p) of all the constant strings obtained by substituting nonempty constant strings
for the variables. Patterns and their languages are called extended [12] if they allow empty

substitutions. Our learning algorithm �nds a minimally general collection fp1; : : : ; plg of at
most k regular patterns such that the union L(p1) [ � � � [ L(pl) of their languages covers

all the positive examples. We call such a minimally general collection a k-minimal multiple

generalization (k-mmg) of S over regular patterns. In Table 1, we show an example of the

k-mmg's over extended regular pattern.
In the previous work [5], we developed a polynomial time algorithm, called k-mmg algo-

rithm, for �nding one of the k-mmg's over regular patterns of a given set of positive examples.
Extending this result, we construct a polynomial time k-mmg algorithm for extended regular

pattern languages. Based on these results, we have implemented the k-mmg algorithm for two
subclasses, m-variable regular patterns and m-variable extended regular patterns by restricting
the number of variables to a small constant m � 0. These k-mmg algorithms use a greedy

search method to obtain more speci�c patterns and the order of search inuences produced
hypotheses. Therefore, we incorporate the following three heuristics into these algorithms for

controlling the order of greedy search: randomized approach, maximal covering approach, and
using-negative approach.

Then, we have run experiments on protein data of transmembrane domains and signal
peptides drawn from PIR and GenBank [7, 10]. The selection of hypothesis space is one of the

most important factors in applying a machine learning algorithm to practical problem. The
classes of extended patterns and nonextended patterns have the same set of representations, but

very di�erent semantics because the former allows empty substitutions and the latter not [12].
For example, assume that a regular pattern pmatches a string w. For every n � 1, if consecutive

occurrences of n variables x1x2 � � �xn in p match some substring of w then the substring must
be a string of length at least n for nonextended substitution, but can be string of any length for

extended substitutions. Preliminary experiments revealed the weakness of nonextended regular
patterns in learning protein motifs compared with extended regular patterns. Hence, we mainly



consider k-mmg's over extended regular patterns in the experiments.
In experiments on transmembrane domains, the system produced some hypotheses of high

accuracy for the data preprocessed with the hydropathy indices due to Kyte and Doolittle [8];
one of such hypotheses has the accuracy around 89% and 85% for positive and negative exam-

ples, respectively. These results of our system are comparable with the results of the learning
system from positive and negative examples in [2]. The experiments also show that the k-mmg

algorithm can very quickly �nd a hypothesis on the computers in practice. In the experiments,
we also compared three control heuristics in accuracy of the produced hypothesis.

2 Minimal Multiple Generalizations

In this section, we give basic de�nitions and results on the framework of minimal multiple

generalization according to Arimura et al. [5]. First, we introduce extended regular patterns
[12]. For a set A, we denote by ]A the number of elements of A. Let � = fa; b; A;B; : : : g
be a �nite set of constant symbols and X = fx; y; z; x1; x2; : : : g be a countable set of variables
disjoint from �. We denote by �� the set of all the �nite strings over � and �+ = �� � f"g,
where " is the empty string.

A regular pattern is a string consisting of constant symbols and variables in which any

variable appears at most once. A substitution is a homomorphism � from regular patterns to
themselves such that �(a) = a for any a 2 �. The form fx1 := p1; : : : ; xn := png denotes the sub-
stitution that maps xi to pi and other symbol to itself. A regular pattern p = w0x1w1x2 � � �xnwn

(wi 2 ��) de�nes the language L(p) as the set of all the constant strings obtained by substi-

tuting possibly empty constant strings to the variables x1; x2; : : : ; xn. In other words, L(p)
consists of all the strings containing substrings w0; w1; : : : ; wn in this order. Note that we allow

"-substitutions, that is, " may be substituted for a variable. A set L of constant strings is said
to be an extended regular pattern language if L = L(p) for some regular pattern p. Let P be a

�nite set of regular patterns. Then, the set P de�nes a union L(P ) =
S
p2P L(p) of extended

regular pattern languages.

A regular pattern p is of canonical form if p contains no consecutive occurrences of variables,
that is, p = w0x1w1 � � �xnwn, wi 2 �� for i = 0; n, and wj 2 �+ for any j = 1; : : : ; n� 1. Any

extended regular pattern language can be de�ned by a regular pattern of canonical form. We
denote by RP" the class of all the regular patterns of canonical form consisting from symbols

in � [X. Note that the class RP" contains ". In what follows, we will deal with only regular
patterns of canonical form and identify patterns obtained by renaming of variables from each

other. We de�ne a partial ordering � on RP": p � q i� p = �(q) for some substitution �. We
write p � q if p � q but q 6� p. If p � q, we say q is more general than p, p is more speci�c

than q or q subsumes p.
Let D be any subset of RP". A set P of regular patterns is reduced if P contains no p; q

such that p � q. Let k be a positive integer and Dk be the class of all the reduced collections
of at most k regular patterns in D. Then, we de�ne a partial ordering v on Dk: P v Q i� for
any p 2 P there is some q 2 Q such that p � q. Note that P v Q implies L(P ) � L(Q) but

the converse does not hold in general.

De�nition. For a class D of patterns, a k-minimal multiple generalization (k-mmg, for short)
of a set S of strings is a minimal element P in Dk with respect to v such that S � L(P ).



We say Dk has the compactness with respect to containment (compactness, for short) if for
any p 2 D and any Q 2 Dk, L(p) � L(Q) () L(p) � L(q) for some q 2 Q. If Dk has

the compactness, then a k-mmg of a set S of strings de�nes a minimal language containing S

within unions of at most k extended regular pattern languages [5]. Under the assumption of

compactness, the following theorem justi�es the use of k-mmg in learning proteins in the sense
of inductive inference from positive data [1, 11].

Theorem 1 (Arimura et al. [5]) Assume that the class Dk has the compactness. If there

is an algorithm that computes one of the k-mmg's of a �nite set S � �� in time polynomial

in the total size of strings in S, then the class of unions of at most k extended regular pattern

languages in D is polynomial time inferable from positive data.

3 Learning Algorithm

In this section, we develop a learning algorithm that produces a k-mmg of a given �nite set of

constant strings in polynomial time for every �xed k � 1 based on the framework in [5]. For
the detail of the algorithm and the proofs of the theorems below, see [5] and [6].

We �rst review the general design scheme of k-mmg algorithm in [5]. Let D be a subclass
of regular patterns. A re�nement operator for D is a mapping � that maps a pattern p 2 D to

a �nite set �(p) of re�nements of p. For P � D, let �(P ) =
S
p2P �(p). We de�ne �0(p) = fpg

and �n(p) = �(�n�1(p)) for every n � 1. Let �+(p) =
S

n�1 �
n(p). A re�nement operator is said

to be complete if p 2 �+(q) () p � q. A one-step re�nement of p is a regular pattern q such
that q � p but there is no r satisfying q � r � p. We can easily observe that � is complete i�

�(p) contains all the one-step re�nements of p for any p. A re�nement operator is said to be
e�cient if given p 2 D the �nite set �(p) � D is polynomial time computable.

In Figure 1 to 3, we present an algorithm that computes k-mmg of a given �nite set S for
a class D of regular patterns. The algorithm searches sets of at most k regular patterns in D

from general to speci�c by using a re�nement operator � for D.

Theorem 2 (Arimura et al. [5]) For any subclass D of regular patterns, if there is a com-

plete and e�cient re�nement operator � for D, then MMG in Figure 1 computes one of the

k-mmg's of a �nite set S of strings in polynomial time in the total size of strings in S.

Then, we extend the k-mmg algorithm for extended regular patterns. Let p be a canonical

regular pattern. We denote by v(p) the set of variables appearing in p. A substitution � is said
to be extended basic for p if � satis�es one of the following conditions:

� � = fx := xayg, where x 2 v(p); y 62 v(p), x 6= y, and a 2 �,

� � = fx := "g, where x 2 v(p).

Then, we de�ne a re�nement operator �(p) = f�(p) j � is extended basic for pg.

Theorem 3 The re�nement operator � is e�cient and complete for extended regular patterns.

Unfortunately, we could not currently show the compactness for the class RPk

";m
. Hence, we

restrict our attention to its subclass. For m � 0, a regular pattern is m-variable if it contains

at most m distinct variables. We denote by RP";m the class of m-variable regular patterns.



MMG(k; S)

1 /* k � 1 and S is the set of positive examples. */

2 P := Tighten(fxg; S);
3 �k := k;

4 while �k � 2 and there exists some p 2 P that is

�k-divisible (�1) with respect to �S
def
= S � L(P � fpg) (�2) do

5 Choose such a divisible member p in P and the corresponding �S; (Choice 1)

6 �P := Divide(p;�k;�S);

7 �P := Tighten(�P;�S);

8 P := (P � fpg) [�P ; and �k := k + ]P � 1;

9 endwhile
10 Return P ;

(*1) a member p in P is �k-divisible with respect to �S if the set Divide( p;�k;�S) exists.

(*2) �S is the set of positive examples subsumed only by p but not by other members in P .

Figure 1: Minimal multiple generalization algorithm

Divide(p; k; S)
1 /* p is a pattern, k � 2 and S is a set of positive examples */

2 Compute the set �(p) of one-step re�nements;

3 Choose a set P of at most k members in �(p) that is (Choice 2)

reduced with respect to (�3) S;

4 Return P ;

(*3) a set P is reduced with respect to S if S � L(P ) but S 6� L(P 0) for any proper

subset P 0 � P .

Figure 2: Algorithm for dividing a member of �P into its re�nements

Tighten(P; T )

1 /* P is a set of patterns and T is a set of positive examples */

2 while for some q 2 P , there is some r in �(q) such that

L(r) � �T
def
= T � L(P � fqg) (�4) do

3 Choose such q in P and the corresponding �T ; (Choice 3)

4 Choose a re�nement r in �(q) such that �T � L(r); (Choice 4)

5 P := (P � fqg) [ frg;
6 endwhile

7 Return P ;

(*4) �T is the set of positive examples subsumed only by q but not by other members in P .

Figure 3: Algorithm for tightening a multiple generalization by re�ning patterns.



Theorem 4 If ]� > 2km, then the class RPk

";m
of sets of at most k m-variable regular patterns

has the compactness.

Now, we give a complete and e�cient re�nement operator �m form-variable extended regular
patterns. A substitution � is said to be extended m-basic for p if ]v(�(p)) � m and � satis�es

one of the following conditions:

� � = fx := xayg, where x 2 v(p); y 62 v(p), x 6= y, and a 2 �,

� � = fx := xag or � = fx := axg, where x 2 v(p) and a 2 �,

� � = fx := "g, where x 2 v(p).

Then, we de�ne �m(p) = f�(p) j � is extended m-basic for pg.

Theorem 5 For every m � 1, the re�nement operator �m is e�cient and complete for m-

variable extended regular patterns.

Corollary 6 Let k;m � 1 be any positive integers, one of the k-mmg's over RP";m of a �nite

set S of strings is computable in time O(]� �k3mkl2n), where l is the maximum length of strings

in S and n = ]S.

By Theorem 1, Theorem 4, and Corollary 6, the class RPk

";m
of unions is polynomial time

inferable from positive data when more than 2km constant symbols are available. Unfortu-
nately, the compactness may not be satis�ed for hypotheses with a small alphabet such as

hydropathy plotted data in Section 5. Nevertheless, this restriction on m is useful in avoiding
over�tting of hypotheses and in reducing time complexity of the learning algorithm as we can

see in Corollary 6 above.

4 Heuristics for Greedy Search

In this section we describe three heuristics used in our learning algorithm. The learning algo-

rithm introduced in the previous section is a greedy algorithm in the sense that it does not
backtrack in searching the hypothesis space from general to speci�c. On the other hand, the

algorithm contains four kinds of nondeterministic choices:

(Choice 1) a pattern p in P to be divided at Line 5 in MMG,

(Choice 2) a subset P of �(p) at Line 3 in Divide,

(Choice 3) a pattern q in P to be re�ned at Line 3 in Tighten, and

(Choice 4) a member r of the set �(p) at Line 4 in Tighten.

At these choice points, the algorithm tests the candidates in some order, and chooses the

�rst candidate satisfying the required condition. Whatever the order of testing candidates is,
the algorithm will eventually �nd a correct k-mmg of given examples. However, di�erent choices

of alternatives yield di�erent solutions. In particular, the accuracy of a produced hypothesis
depends on the order.

For example, assume that we compute a 3-mmg of a given set fabc; abcba; cab; abab; cbbb; abbg.
Starting from the same hypothesis fxaybz; xcybzg, if we �rst re�ne xaybz then we get a 3-mmg

fabxb; abcx; cxbg while if we �rst re�ne xcybz then we might get another 3-mmg fcbbb; abx; cabg.
The latter solution contains constant strings cbbb and cab. We call such constant strings in a

solution exceptions.



For Choice 2 and Choice 4, we test the required subset P and the required pattern r in
random order. For Choice 1 and Choice 3, respectively, we take three approaches in testing the

patterns p and q:

� Randomized approach: the system tests the candidates in random order at Choice 1 and
Choice 3.

� Maximal covering approach: To obtain hypotheses with less exceptions, the system tests

patterns covering more positive examples earlier at Choice 1 and Choice 3.

� Using-negative approach: This heuristic uses some negative examples to guide the search.
To obtain hypotheses with less negative errors, the system tests the patterns containing

more negative examples earlier at Choice 1 and Choice 3.

5 Experimental Results

We have run experiments for the learning algorithm augmented with three types of heuristics:
randomized, maximal covering, and using-negative approaches. We use the hypothesis space
RPk

";m
and the re�nement operator �m, where the parameters k andm are appropriately chosen

small integers from 3 to 10 and from 3 to 5, respectively. Programs are written in C++ and
the tests are run on a Sun SparcStation-10.

Given a large set Pos of positive examples, the learning system randomly draws a small
subset pos from Pos, where the number of examples in pos ranges from 20 to 90. For using-

negative approach, the system also draws a small subset neg of a large set Neg of negative
examples. Then it computes a hypothesis from pos (and neg in using-negative approach)

according to the respective heuristics. To compare the e�ect of heuristics in learning, we used
the score (p%; n%) as the measure of accuracy, which denotes that the hypothesis covers p% of

positive examples in Pos and excludes n% of negative examples in Neg.

5.1 Data

The experiments used the data from the following two sources.

(1) Transmembrane domains: From PIR database [10], we obtained 689 positive data and
19256 negative data. Since the data on transmembrane domains essentially consists of only

positive examples, we randomly took as negative examples sequences of length exactly 30 from
all the sequence registered in the database without overlap with transmembrane domains.

(2) Signal peptide sequences: From GenBank database [7], we obtained 1018 positive ex-
amples as the initial segments of amino acid sequences according to the indication, and 3158

negative examples as the initial segment of 30 amino acids. The leftmost amino acid is almost
always `M', and therefore is removed from all the positive and negative examples.

For each sources, we also prepared data preprocessed with hydropathy indices due to Kyte
and Doolittle [8]. We transformed twenty symbols of amino acids to three symbols 0, 1, and 2

with the Table 2. This greatly reduced the search space [2].

5.2 Results on transmembrane domains

For transmembrane domains, the system produced some hypotheses with high accuracy. From

randomly chosen 25 positive raw data, we obtained a hypothesis with accuracy (70:4%; 71:3%)



amino acid hydropathy symbol

R K D E N Q H �4:5 � �3:2 0

P Y W S T G �1:6 � �0:4 1

A M C F L V I +1:8 � +4:5 2

Table 2: Hydropathy indices.

within RPk

";m
for k = 5;m = 3 in maximal covering approach (Table 3 (T1)). From randomly

chosen 50 positive indexed data, we obtained a hypothesis with high accuracy (89:1%; 85:0%)
within RPk

";m
for k = 5;m = 5 in using-negative approach (Table 3 (T2)).

We have many hypotheses of high accuracy by other heuristics as well. The accuracy is
comparable with the accuracy of some hypotheses found by the learning algorithm in [2]. It is

surprising that the accuracy was achieved by a machine learning from only positive examples,
while the system in [2] requires both positive and negative examples. It should be noted that

our system run much faster than their system for the same hypothesis space. In most cases,
the algorithm �nd a hypothesis within 1 second for 10 � 50 positive examples.

(T1) raw data, M

patterns p% n%

*IL*I* 20.5 93.4

*L*GI* 17.1 93.1

*L*VI* 23.1 94.1

*LF*I* 18.8 95.0

*VL*A* 29.3 91.2

accuracy 70.4 71.3

(T2) hydropathy plotted data, U

patterns p% n%

*2*22*2222*22* 75.4 90.1

*221*2212*22* 57.3 92.3

*222212*21*121*22* 4.5 99.6

120*22*22*0*212122* 0.0 100.0

12120112121222221121212 0.0 100.0

accuracy 89.1 85.0

(S1) raw data, U

patterns p% n%

*F*AL*A 6.7 99.6

*FL*GV* 11.5 99.0

*I*FL*G 3.0 99.7

*LL*L* 64.0 65.7

K*F*LF* 1.4 99.5

accuracy 79.5 64.7

(S2) hydropathy plotted data, M

patterns p% n%

*1*2222*22*2*1 29.5 89.3

*222*1222*21*1 13.4 94.0

*222*2*22*2 42.0 81.6

0*22*2222*2*1* 30.6 87.8

02*22*00*222*2* 0.1 99.1

accuracy 83.3 64.9

Table 3: Some of the hypothesis with highest accuracy that our learning algorithm produced

from positive examples of transmembrane domains (T1, T2) and signal peptides (S1, S2), where

`�' denotes a variable. The second and the third columns of each table, respectively, show the

percentages of the positive examples covered and negative examples excluded by the pattern

in the �rst column. M and U denote \maximal covering" and \using-negative", respectively.
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Figure 4: A comparison of accuracies of the solutions obtained by three heuristics on hydropathy

plotted data of transmembrane domains. The hypothesis space is RPk

";m
for k = 5; m = 5.

The X-axes and the Y-axes show the size of the training set and the total accuracy
p
p � n of

a hypothesis, respectively, where p and n are positive and negative accuracies. Vertical bars

show the variance of the accuracies.

5.3 Results on signal peptide sequences

For signal peptide sequences, the accuracies of hypotheses produced by the system were not so
high. From the randomly chosen 30 positive raw data, The best hypothesis we obtained has

the accuracy (79:5%; 64:7%) within RPk

";m
for k = 5;m = 3 in using-negative approach (Table

3 (S1)). From the randomly chosen 60 positive indexed data, we obtained a hypothesis with

accuracy (83:3%; 64:9%) within RPk

";m
for k = 5;m = 5 in maximal covering approach (Table

3 (S2)).

5.4 Comparison among three heuristics

On hydropathy indexed transmembrane domain data, we run experiments to compare three
heuristics introduced in Section 4. The hypothesis space is RPk

";m
for k = 5;m = 5. We

summarize the results in Figure 4 above. From Table 3 and Figure 4, we observed the following
advantages of the other two approaches compared to randomized approach:

� Maximal covering approach: This approach rarely generates exceptions, because this

approach does not divide patterns covering a few positive examples. On the other hand,
the randomized approach will generate exceptions by dividing already re�ned patterns.

� Using-negative approach: This approach produces stable solutions in accuracy because

any pattern with high negative error will be divided and re�ned earlier. Therefore, the
variance of accuracies obtained by this approach is smaller than those by others.

Nevertheless, we could not observe any signi�cant di�erences of the highest and the average
accuracies among three heuristics in the experiences.



6 Conclusion

In this paper, we implemented a polynomial time learning algorithm for unions of extended

regular pattern languages from positive data, and showed that our method for learning protein
motifs from positive data can e�ciently work on computers in practice.

In the experiments of this paper, the results heavily depend on the selection of parameters
k and m � 1 of the hypothesis space RPk

";m
because too large values cause over�tting as well

as too small values cause overgeneralization to the examples. Thus, automatic selection of such
a hypothesis space is a future problem.
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