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Abstract

We empirically demonstrate the e�ectiveness of a method of predicting protein sec-

ondary structures, �-sheet regions in particular, using a class of stochastic tree grammars

as representational language for their amino acid sequence patterns. The family of stochas-

tic tree grammars we use, the Stochastic Ranked Node Rewriting Grammars (SRNRG),

is one of the rare families of stochastic grammars that are expressive enough to capture

the kind of long-distance dependencies exhibited by the sequences of �-sheet regions, and

at the same time enjoy relatively e�cient processing. We applied our method on real

data obtained from the HSSP database and the results obtained are encouraging: Using an

SRNRG trained by data of a particular protein, our method was actually able to predict the

location and structure of �-sheet regions in a number of di�erent proteins, whose sequences

are less than 25 per cent homologous to the training sequences. The learning algorithm we

use is an extension of the `Inside-Outside' algorithm for stochastic context free grammars,

but with a number of signi�cant modi�cations. First, we restricted the grammars used to

be members of the `linear' subclass of SRNRG, and devised simpler and faster algorithms

for this subclass. Secondly, we reduced the alphabet size (i.e. the number of amino acids)

by clustering them using their physico-chemical properties, gradually through the iterations

of the learning algorithm. Our experiments indicate that our prediction method not only

goes beyond what is possible by alignment alone, but the grammar that was acquired by

our learning algorithm captures the type of long distance dependencies that could not be

succinctly expressed by an HMM. We also stress that our method can predict the struc-

ture as well as the location of �-sheet regions, which was not possible by previous inverse

protein folding methods.
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1 Introduction

The problem of predicting protein structures from their amino acid sequences is probably

the single most important problem in genetic information processing with immense scienti�c

signi�cance and broad engineering applications. The secondary structure prediction problem,

namely the problem of determining which regions in a given amino acid sequence correspond

to each of the three categories, �-helix, �-sheet, and others, is considered to be an important

step towards this goal, and has been attempted by many researchers (e.g. [14]). No method

to date, however, has achieved a prediction accuracy much higher than 70 per cent, casting

serious doubt as to whether a signi�cantly better performance is achievable by any approach

along this line.

Motivated largely by the apparent limitation of residue-wise secondary structure prediction

methods, more `knowledge intensive' approaches to the problem of protein structure predic-

tion have been proposed and investigated, including the homology-based approach [4] and the

`inverse protein folding' approach [5]. More recently it has been proposed [6] that all protein

structures (foldings) found in today's living organisms can be classi�ed into a relatively small

number (less than a thousand or so) of types, in con�rmation of such knowledge intensive

approaches. In a knowledge-based approach, the prediction method keeps e�ectively a cata-

logue of patterns of amino acid sequences corresponding to existing types of protein structures,

and prediction on a new sequence is done by simply �nding those patterns that match parts

of the input sequence. The central issue here then is how to represent these patterns with

a su�cient and appropriate level of generalization. Abe and Mamitsuka have recently pro-

posed to use a certain class of stochastic tree grammars called the Stochastic Ranked Node

Rewriting Grammars (SRNRG) as representational scheme for sequence patterns of protein

secondary structures, especially those of �-sheets [2]. The primary goal of the present paper is

to demonstrate its e�ectiveness by further experimental results.

The problem of predicting �-sheet regions has been considered di�cult because �-sheets

typically range over several discontinuous sections in an amino acid sequence, and their se-

quences exhibit long distance dependency. The family of stochastic tree grammars we use in

the present paper (SRNRG) is suitable for expressing the kind of long-distance dependencies

exhibited by the sequences of �-sheet regions, such as the `parallel' and `anti-parallel' dependen-

cies and their combinations. RNRG was originally introduced in the context of computationally

e�cient learnability of grammars in [1], and its discovery was inspired by the pioneering work

of Joshi et al. [11, 18] on a formalism for natural language called `Tree Adjoining Grammars'

(TAG).1 In particular, SRNRG has expressive power exceeding those of both Hidden Markov

Models (HMMs) and stochastic context free grammars (SCFGs), and yet allows the existence of

polynomial time parsing and local optimization algorithm for the maximum likelihood settings

of probability parameters.2

We designed and implemented a method for predicting �-sheet regions using SRNRG as the

representational language. Our prediction method receives as input amino acid sequences with

the location of �-sheet regions marked, and trains the probability parameters of an SRNRG,

1Searls claimed that the language of �-sheets is beyond context free and suggested that they are indexed lan-

guages [17]. Indexed languages are not recognizable in polynomial time, however, and hence indexed grammars

are not useful for our purpose. RNRG falls between them and appears to be just what we need.
2Both HMM and SCFG have recently been used in the context of genetic information processing [12, 3, 15, 8].



so that its distribution best approximates the patterns of the input sample. Some of the rules

in the grammar are intended a priori for generating �-sheet regions and others for non-�-

sheets. After training, the method is given a sequence of amino acids with unknown secondary

structure, and predicts according to which regions are generated by the �-sheet rules, in the

most likely parse for the input sequence.

The learning algorithm we use is an extension of the `Inside-Outside' algorithm for the

stochastic context free grammars. In order to reduce the rather high computational requirement

of the learning and parsing algorithms, we have restricted the form of grammars to a certain

subclass of RNRG which we call the `linear RNRG,' and devised a simpler and faster learning

algorithm for the subclass. We also employed a method of reducing the alphabet size3 (i.e.

the number of amino acids) by clustering them using MDL(Minimum Description Length)

approximation and their physico-chemical properties, gradually through the iterations of the

learning algorithm.4

We applied our method on real data obtained from the HSSP (Homology-derived Secondary

Structures of Proteins Ver 1.0 [16]) database. The results obtained indicate that our method

is able to capture and generalize the type of long-distance dependencies that characterize �-

sheets. Using an SRNRG trained by data for a particular protein, our method was actually

able to predict the location and structure of �-sheets in test sequences of a number of di�erent

proteins, which have similar structures but have less than 25 per cent pairwise homology to

the training sequences.5 We emphasize that, unlike previous secondary structure prediction

methods, our method is able to predict the structure of the �-sheet, namely the locations of the

hydrogen bonds. Furthermore, our experiments indicate that the grammar that was acquired

by our learning algorithm captures the type of long distance dependencies that could not be

succinctly expressed by an HMM.

2 Modeling Beta Sheet Structures with RNRG

We �rst brie
y review the de�nition of the Ranked Node Rewriting Grammar (RNRG) and give

some illustrative examples.6 An RNRG is a tree generating system, and consists of a single tree

structure called the starting tree, and a �nite collection of rewriting rules which rewrite a node

in a tree with an incomplete tree structure. The node to be rewritten needs to be labeled with

a non-terminal symbol, and must have the same number of descendants (called the `rank' of

the node) as the number of `empty nodes' in the incomplete tree structure. After rewriting, the

descendants of the node are attached to these empty nodes in the same order as before rewriting.

The string language of the grammar is the set of yields of the trees generated by the grammar,

namely the strings that appear on the leaves of the trees. If we place an upper bound, say k,

on the rank of a node that can be rewritten, we obtain families of grammars, RNRG(k), each

of which has varying expressive power. The string languages of RNRG(0), denoted RNRL(0),

3As is well known, there are twenty amino acids, and hence we are dealing with an alphabet of size 20.
4The physico-chemical properties we use are the molecular weight and the hydrophobicity, which were used

in [13] in their method for predicting �-helix regions.
5Prediction problems for which the training sequences and the test sequences are less than 25 per cent

homologous are sometimes referred to in the literature as the `Twilight Zone' [7], since alignment is not e�ective

for such problems.
6We refer the interested reader to [1] for the detailed de�nition.
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Figure 1: (a) RNRG(1) grammar G1 and (b) RNRG(2) grammar G2.
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Figure 2: Derivation of `ababab' by an RNRG-2 grammar

equal the context free languages (CFL), those of RNRG(1) equal the tree adjoining languages

(TAL), and for any k � 2, RNRL(k) properly contains RNRL(k � 1). We now give some

examples of RNRG grammars. The language L1 = fwwRwwRjw 2 fa; bgg is generated by the

RNRG(1) grammar G1 shown
7 in Figure 1(a). The `3 copy' language L2 = fwww j w 2 fa; bg�g

can be generated by the RNRG(2) grammar G2 shown in Figure 1(b). Note that L1 can be

generated by a tree adjoining grammar, but not L2. The way the derivation in RNRG takes

place is illustrated in Figure 2, which shows the derivation of the string `ababab' by G2. Each

of the trees shown in Figure 2 is called a `partially derived tree.' Note that the tree structure

introduced by a particular rule may be split into several pieces in the �nal derived tree, unlike

usual parse trees in CFG. (In the �gure, the part of the derived tree introduced by (�1) is

indicated in a thick line.) Given the de�nition of RNRG, the stochastic RNRG is de�ned

analogously to the way stochastic CFG is de�ned from CFG. That is, associated with each

rewriting rule in a stochastic RNRG is its rule application probability, which is constrained so

that for each non-terminal, the sum total of rule application probabilities of all the rewriting

rules for that non-terminal equals unity.

Next some typical �-sheet structures are illustrated schematically in Figure 3. The arrows

indicate the �-sheet strands, and the line going through them the amino acid sequence. The

�-sheet structure is retained by hydrogen bonds (H-bonds) between the corresponding amino

acids in neighboring strands, so it is reasonable to suspect that there are correlations between

the amino acids in those positions. The structure exhibited in Figure 3 (a) is known as the

`anti-parallel' �-sheet, as the dependency follows the pattern abc::cba::abc:::cba, where the use

of a same letter indicates that those positions are connected by H-bonds and believed to be

7Note that `�' indicates the empty string, and an edge leading to no letter leads to an empty node.
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Figure 3: Some typical �-sheet structures

correlated. In contrast, the structure exhibited in Figure 3 (b) is known as the `parallel' �-sheet,

since the dependency here is of the pattern abc::abc::. Both of these types of dependency can

be captured by RNRG, in particular, G1 and G2 in Figure 1, respectively. These structures

can be combined to obtain larger �-sheets, as is shown in Figure 3(d) and can result in a high

degree of complexity, but they can be handled by an RNRG of a higher rank.

3 Learning and Parsing of The Linear Subclass

The `linear' subclass of RNRG we use in this paper is the subclass satisfying the following two

constraints: (i) Each rewriting rule contains at most one node labeled with a non-terminal

symbol of rank greater than 0; (ii) Every other non-terminal (of rank 0) is a `lexical' non-

terminal, namely all rewriting rules for it are of the form A ! a for some terminal symbol

a. Examples of RNRG of rank 1 satisfying these constraints can be found, for example, in

Figure 4(a). Note that each occurrence of a lexical non-terminal can be thought of as de�ning

a distribution over the alphabet, and this is written in as part of the rule in the �gure. With

these constraints, the parsing and learning algorithms can be signi�cantly simpli�ed.

3.1 The Learning Algorithm

Our learning algorithm is an extension of the `Inside-Outside' algorithm for SCFG [10] and it

is a local optimization algorithm for the maximum likelihood settings of the rule application

probabilities and the letter (amino acid) generation probabilities in the input grammar. The

algorithm is an iterative procedure which re-estimates and updates its current settings of all of

its probability parameters. The re-estimation procedure is guaranteed to increase the likelihood

assigned to the sample, as is the case with the Baum-Welch re-estimation for HMM. Due to

space limitations, we omit the details of our learning algorithm, which can be found in [2].

3.2 Reducing the Alphabet Size with MDL Approximation

After each iteration of the above learning algorithm at each lexical rule, we attempt to merge

some of the amino acids, if the merge reduces the total description length (approximated using



the probability parameters calculated up to that point). For this purpose we make use of the

Euclidean distance between the 20 amino acids in the (normalized) 2-dimensional space de�ned

by their molecular weight and hydrophobicity. At each iteration, we select the two among the

clusters from the previous iteration, which are closest to each other in the above Euclidean space,

and merge them to obtain a single new cluster, provided that the merge results in reducing the

following approximation of `description length,' where we let c 2 C be the clusters, P (c) the

sum total of generation probabilities of amino acids in the cluster c, and m the e�ective sample

size, namely the weighted frequency of the lexical rule in question in the parses of the input

sample, weighted according to the current parameter settings.

4 Experimental Results

We applied our method on real data obtained from the HSSP database. In our �rst experiment,

we picked three di�erent proteins, `Fasciculin' (1fas), `Caldiotoxin' (1cdta) and `Neurotoxin

B' (1nxb), all of which are toxins. Although these three proteins do have relatively similar

structures, their sequences are less than 25 per cent homologous to one another,8 and hence

alignment alone can hardly detect this similarity. We trained a stochastic RNRG with training

data consisting e�ectively of bracketed sequences for one of the three proteins, say 1fas, and

used the acquired grammar to predict the location of �-sheet regions in an amino acid sequence

of another one of the three, either 1cdta or 1nxb. By bracketing the input sequences, we mean

that we isolated out the (discontinuous) sub-strings of the training sequences that correspond

to �-sheets from the rest, and trained the probability parameters of the `�-sheet rules' in the

grammar with them.9 The probability parameters of the non-�-rules were set to be uniform.

We then used the acquired stochastic RNRG grammar to parse an amino acid sequence of either

1cdta or 1nxb, and predicted the location of �-sheet regions according to where the �-sheet

rules are in the most likely parse. It was able to predict the location of all three �-strands

contained in the test sequence almost exactly (missing only one or two residues which were

absent in all of the training data) in both cases. We repeated the same experiment for all

(six) possible combinations of the training data and a test sequence from the three proteins.

Our method was able to predict all three of the �-strands in all cases, except in predicting

the location of �-sheet in a test sequence for 1cdta from training data for 1nxb: It failed to

identify one of the three �-strands correctly in this case. The sequences of these toxins were

approximately 60 residue long, and the parsing of these sequences required more than an hour

on a Silicon Graphics Indigo II graphic workstation.

Figure 4(a) shows the part of the stochastic RNRG(1) grammar obtained by our learning

algorithm on the training set for 1fas that generates the �-sheet regions. Note that, in the �gure,

the amino acid generation probabilities at each position are written in a box. For example, the

distribution at the right upper corner in (�4) gives probability 0.80 to the cluster fI; L; V g and

probability 0.10 to the single amino acid Y . The interpretation of the grammar is summarized

schematically in Figure 4(b). It is easy to see that the grammar represents a class of �-sheets

of type (c) in Figure 3. Each of the rules (�1), (�2), (�3), (�4), (�6) and (�7) generates part of

the �-sheet region corresponding to a row of H-bonds, and (�5) inserts an `extra' amino acid

8These were obtained using PDB SELECT (25 %) developed by Hoboem et. al. [9].
9Bracketed input samples are often used in applications of SCFG in speech recognition.
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Figure 4: (a) A part of the acquired RNRG grammar and (b) its interpretation.

that does not take part in any H-bond. Rule (�4) says that in the third (from the top) row of

H-bonds, amino acids I; L and V are equally likely to occur in the leftmost strand, and it is

very likely to be K in the middle strand. Note that I; L; and V have similar physico-chemical

properties, and it is reasonable that they were merged to form a cluster.

Figure 5(a) shows the most likely parse (derived tree) obtained by the grammar on a test

sequence of 1cdta. The shaded areas indicate the actual �-sheet regions, which are all correctly

predicted. The seven types of thick lines correspond to the parts of the derived tree generated

by the seven rules shown in Figure 4(a), respectively. The structural interpretation of this

parse is indicated schematically in Figure 5(b), which is also exactly correct. Note that the

distributions of amino acids are quite well spread over a large number of amino acids. For

example, none of the amino acids in the third strand of the test sequence, except the last two

Cs, receives a dominantly high probability in the acquired grammar. The merging of I; L and

V mentioned above, therefore, was crucial for the grammar to be able to predict the third

strand of the �-sheet in the test sequence.

One apparent shortcoming of the experimental result we just described is that only one

copy of each of the rules (�1); :::; (�7) was present in the trained grammar. As a result, each of

the acquired rules was able to simply capture the distributions of amino acids at each residue

position, and therefore was not able to truly capture the correlations that exist between residue

positions, even if they are captured by a single rule. In another experiment we conducted using

exactly the same data as in the above experiment, we used multiple copies (two in particular)

of each of the �-sheet rules (�1); :::; (�7). (Randomly generated numbers were used for the

initial values of their probability parameters.) In the acquired grammar, some rules were split

into a pair of rules that signi�cantly di�er from each other, while others became basically two
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Figure 5: (a) The parse of the test sequence and (b) its interpretation.

copies of the same rule. An example of a rule that was split is (�3) in Figure 4(a), and the

two rules it split into are shown in Figure 6(a). This split is meaningful, because in the new

grammar, the joint distribution over the two nodes at the top are seen to be heavily concentrated

on (K; fN;Hg) and (N; fR;Kg), which is �ner than what we had in the previous grammar

(fK;Ng; fN;H;R;Kg). This way, the grammar was able to capture the correlation between

these residue positions, which are far from each other in the input sequence.

The grammar containing two copies each of the �-sheet rules obtained using training data

for 1fas was used to predict a test sequence for both 1cdta and 1nxb. As before, the locations

of all three �-strands were predicted exactly correctly. Interestingly, distinct copies of some of

the split rules were used in the respective most likely parses for 1cdta and 1nxb. For example,

rule (�3-1) was used in the most likely parse for the test sequence for 1cdta, (�3-2) for 1nxb.

It seems to indicate that the training sequences for 1fas contained at least two dependency

patterns for this bonding cite, as shown in Figure 6(b), and the corresponding bonding cite in

1cdta was of the �rst type and 1nxb of the second.

The point just illustrated is worth emphasizing. If one tried to capture this type of correla-

tions that exist in bonding cites by a hidden Markov model (HMM), it would necessarily result

in a much higher complexity. For example, suppose that eight bonding cites in a row (say each

with just two residue positions for simplicity) are split into two distinct rules. Note that in an

HMM, the eight rules would have to be realized by two copies of consecutive states - sixteen

states in a chain. Since there are 28 = 256 possible combinations of rules to use, the HMM

would have to have 256 non-deterministic branches of state sequences, each corresponding to

a possible combination of the eight options. In the case of stochastic tree grammar, we only

needed to have 2 � 8 rules. Clearly this huge saving in complexity is made possible by the

richer expressive power of stochastic tree grammars.
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Figure 6: (a) Rules (�3) split into and (b) their interpretations.

5 Concluding Remarks

We have described a method for predicting protein secondary structures, using a class of stochas-

tic tree grammars as representational language for their amino acid sequence patterns. Our

experimental results, admittedly, were of preliminary nature in which the test sequences were

known to contain relatively similar structures to those of the training sequences. In the future,

we hope to demonstrate that our method can achieve a high prediction accuracy on an arbi-

trary test sequence, when equipped with a large catalogue of generalized patterns, expressed as

SRNRG rules.
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