
New Hashing Techniques for Three-Dimensional

Protein Structures

Tatsuya Akutsu1 Kentaro Onizuka2 Masato Ishikawa3

akutsu@cs.gunma-u.ac.jp onizuka@mrit.mei.co.jp ishikawa@icot.or.jp

1 Department of Computer Science, Gunma University

1-5-1 Tenjin, Kiryu, Gunma 376 Japan

2 Human Interface Research Laboratory, Matsusita Research Institute

Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214 Japan

3 Institute for New Generation Computer Technology

1-4-28 Mita, Minato-ku, Tokyo 108 Japan

Abstract

This paper describes new methods to evaluate the structural similarity of proteins.

In each method, a hash vector is associated with each �xed-length fragment of protein

structure, where the following desirable property is theoretically proved: if the root mean

square deviation between two fragments is small, then the distance between the hash vectors

is small. Using the hash vectors, searching for similar protein structures can be done

quickly. The methods were compared with the previous methods using PDB data, and

were shown to be much faster.

1 Introduction

Comparing three-dimensional (3D) protein structures is important for genome informatics.

Indeed, a lot of methods have been proposed to compare 3D protein structures [2, 8, 9, 11, 12,

15, 16, 17]. However, few methods can be used for quick searching for similar structures among

a large number of protein structures. Quick searching for similar structures is very important

for interactive uses of protein structure database systems since the number of proteins, for

which 3D structures are known, is several hundreds now and it grows year by year.
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Here, we briey review previous work. While several problems can be considered for search-

ing for similar structures, this paper focuses on the following problem (the substructure search

problem): given a fragment structure P and a positive real number �, �nd all proteins in a

database each of which contains at least a fragment R such that the root mean square devia-

tion (rmsd, in short) between P and R does not exceed �. Nussinov and Wolfson's method

[8] based on the geometric hashing technique may be used for quick substructure searching.

However, it requires long preprocessing time and large memory space. Other types of geomet-

ric hashing techniques have also been proposed in computer vision [6, 7], while none of them

seems to be suited to this problem. An FFT(Fast Fourier Transform)-based algorithm, which

was developed for computer vision by Schwartz and Sharir [13], may be used. Although their

algorithm is elegant and e�cient, it is not practical for typical sizes of fragment structures.

Indeed, experimental results show that it is better than a naive method only when the number

of residues is more than 200 � 300 [14].

In the previous paper, one of the authors proposed a method for quick substructure search-

ing, named the least-squares hashing method [1]. It is quite di�erent from the geometric hashing

technique used by Nussinov and Wolfson [8]. In the least-squares hashing method, a vector of

real numbers is associated with each �xed length fragment of protein structure. It works very

well in most cases. But, it sometimes fails to �nd similar substructures because the following

property does not necessarily hold: if rmsd between two fragments is small, the distance be-

tween the associated hash vectors is small. Thus, we have developed new hashing methods, in

which the above property is theoretically proved. As far as we know, the proposed hash vectors

are the �rst ones for which the above property is theoretically proved. Moreover, experimental

results using PDB (Protein Data Bank) data [3] show that the new methods are much faster

than the naive method and the least-squares hashing method.

2 Preliminaries

In this paper, protein structures are treated as follows. As we are only interested in representing

an outline of 3D structure, we follow the common procedure of ignoring side chains and consider

only the carbon and nitrogen atoms (or C� atoms) in the main chain, which are treated as

points in 3D space. Only the geometry of structures is considered and details such as the

identity of speci�c atoms are ignored. Thus, each protein structure is treated as a sequence of

points. For each structure P = (p1; � � � ;pn), jP j denotes the number of points in P , and Pi;j
denotes the fragment (pi;pi+1; � � � ;pj) of P .

2.1 Root Mean Square Deviation

Here, we briey review the root mean square deviation, which is used as a common measure

for comparing two protein structures in molecular biology. The rmsd �tting is a kind of

least-squares �tting method for two sequences of points, and was developed by several persons

independently [5, 10, 13].

Let P = (p
1
; � � � ;pn) and Q = (q

1
; � � � ; qn) be two sequences of points. We assume that P is

translated so that its centroid (
1

n

nX
k=1

pk) is at the origin. We also assume that Q is translated in

the same way. For each point or vector x, (x)i (i = 1; 2; 3) denotes the i-th (X,Y,Z) coordinate



value of x, and kxk denotes the length of x. Let

d(P;Q;R;a) =

vuut1

n

nX
k=1

kRpk + a� qkk2 ;

where R is a rotation matrix and a is a translation vector. Then, the rmsd value d(P;Q)

between P and Q is de�ned by d(P;Q) = min
R;a

d(P;Q;R;a).

d(P;Q;R;a) is minimized when a = 0 and R = (AtA)1=2A�1, where the matrix A =

(Aij) (i; j = 1; 2; 3) is given by Aij =
nX

k=1

(pk)i(qk)j , A
1=2 = B means BB = A, and 0 de-

notes the zero vector [13]. Thus, d(P;Q), R and a can be computed in O(n) time, where

O(f(n)) time means that the computation time is at most C � f(n) for some constant C.

2.2 Substructure Search Problem

Using rmsd, we de�ne the substructure search problem as follows (see Fig. 1):

Input: A (pattern) fragment P = (p1; � � � ;pm), a real number � > 0 and a set of proteins

QS = fQ1; � � � ; QNg,

Output: All structures Qj each of which contains at least a fragment Q
j
i;i+m�1 such that

d(P;Qj
i;i+m�1) � �.

The substructure search problem can be solved by a naive method which computes rmsd for

all Qj
i;i+m�1's. However, it takes O(Nmn) time, where we assume that the length of each Qj is

O(n). In fact, experimental results described in Section 4 show that it takes about a minute.

It is too long for interactive uses of database management systems.

3 New Hash Vectors

3.1 Conditions for Hash Vectors

Before describing new hash vectors, we describe general conditions which should be satis�ed by

any hash vector. In conventional hashing methods, an integer number is associated with each

object. However, in the hashing methods for protein structures, a vector of reals is associated

with each fragment of �xed length. For each fragment P = (p1; � � � ;pH) of length H , a hash

vector hs(P ) is associated. Then, the following conditions should be satis�ed by hs(P ):

(A) hs(P ) is invariant with any isometric transformation (rotation/translation) for P ,

(B) hs(P ) is close to hs(Q) if d(P;Q) is small.

Although condition (A) may be implied by condition (B), we describe them separately to make

the presentation clear. Note that once such a vector is given, d(P;Q) must be computed only

when hs(P ) is close to hs(Q). In the least-squares hashing method previously proposed [1],

condition (A) is satis�ed but condition (B) is not necessarily satis�ed. Indeed, it sometimes

fails to �nd similar fragments.
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Figure 1: Substructure search problem.

3.2 Hash Vectors

Here, we describe new hash vectors. All vectors are very simple and computed in a similar way.

First, we describe a basic one, denoted by HASH(A).

HASH(A):

hs(P ) = (c1(P ); s1(P ); � � � ; cD(P ); sD(P )), where

ci(P ) = �
HX
k=1

kpk � ck (cos(
2�i(k � 1)

H
) + �) ;

si(P ) = �
HX
k=1

kpk � ck (sin(
2�i(k � 1)

H
) + �) :

Note that c denotes the centroid of P (i.e., c =
HX
k=1

pk). Also note that � (� > 0) and �

(� � 0) are �xed reals and D is a �xed integer, which are to be determined later. hs(P ) is

similar to (a low frequency part of) the Fourier spectrum of the distances between the points

and the centroid (see Fig. 2). Although the Fourier spectrum has been already applied to

geometric hashing in Ref. [6], hs(P ) is quite di�erent from it.



Hash Vector:
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Figure 2: Computation of a hash vector.

For hs(P ), condition (A) is trivially satis�ed since hs(P ) is computed only from the dis-

tances between the points and the centroid. To show that condition (B) is satis�ed, we �rst

prove the following lemma.

Lemma 1: Assume that P = (p1; � � � ;pH) and Q = (q1; � � � ; qH) are translated so that

the centroids are at the origin. Then, j
HX
k=1

kpkk �
HX
k=1

kqkk j � H d(P;Q) holds.

Proof: Let Q̂ = (q̂1; � � � ; q̂H) denotes the rotated sequence of Q such that d(P; Q̂; I;0) =

d(P;Q), where I denotes the identity matrix.

Then, the following inequality holds:

j
HX
k=1

kpkk �
HX
k=1

kqkk j = j
HX
k=1

kpkk �
HX
k=1

kq̂kk j �
HX
k=1

j kpkk � kq̂kk j �
HX
k=1

kpk � q̂kk ;

where the last inequality comes from the triangular inequality. Since t1 + � � � + tH �
p
Hq

t21 + � � �+ t2H holds for all t1 � 0; � � � ; tH � 0,

HX
k=1

kpk � q̂kk �
p
H

vuut HX
k=1

kpk � q̂kk2 = H d(P;Q)



holds and the lemma follows. 2

From Lemma 1, the following theorem is immediately proved, which shows that HASH(A)

satis�es condition (B).

Theorem 1: For all i, jci(P ) � ci(Q)j � H�(1 + �)d(P;Q) and jsi(P ) � si(Q)j � H�(1 +

�)d(P;Q) hold.

Let COND(P;Q; ) denote the condition that (jsi(P ) � si(Q)j �  ^ jci(P ) � ci(Q)j � )

holds for all i, where  is a �xed real. From Theorem 1, the following property holds: if

COND(P;Q; ) does not hold for  = H�(1+�)�, then d(P;Q) > �. Thus, if COND(P;Q; )

does not hold, it can be concluded that d(P;Q) > � without computing rmsd (d(P;Q)). How-

ever, note that d(P;Q) � � does not necessarily hold if COND(P;Q; ) holds. Note that hs(P )

can be computed in O(H) time, and condition COND(P;Q; ) can be tested in constant time

since we assume that D is a �xed small integer.

Next, we describe several variants of HASH(A). HASH(B) and HASH(B') are obtained by

replacing the centroid c of HASH(A) with other positions.

HASH(B):

hs(P ) = (c0
1
(P ); s0

1
(P ); � � � ; c0D(P ); s0D(P )), where c0i(P ) (resp. s0i(P )) is same as ci(P )

(resp. si(P )) except that d =
LX
k=1

pk is used in place of c, where L is a �xed integer.

HASH(B'):

hs(P ) = (c00
1
(P ); s00

1
(P ); � � � ; c00D(P ); s00D(P )), where c00i (P ) (resp. s00i (P )) is same as ci(P )

(resp. si(P )) except that e =
NX

k=N�L+1

pk is used in place of c.

Next, we describe HASH(A+B) and HASH(A+B+B'), each of which is a combination of

the vectors described above.

HASH(A+B):

hs(P ) = (c1(P ); s1(P ); � � � ; cD(P ); sD(P ); c01(P ); s01(P ); � � � ; c0D(P ); s0D(P )).

HASH(A+B+B'):

hs(P ) = (c1(P ); s1(P ); � � � ; cD(P ); sD(P ); c01(P ); s01(P ); � � � ; c0D(P ); s0D(P );
c001(P ); s

00

1(P ); � � � ; c00D(P ); s00D(P )).

Finally, we describe HASH(X). While all vectors described above correspond to a 1D Fourier

spectrum, HASH(X) corresponds to a 2D Fourier spectrum. HASH(X) is similar to (a low fre-

quency part of) a 2D Fourier spectrum of the distance map.



HASH(X):

hs(P ) = (cc11(P ); cs11(P ); sc11(P ); ss11(P ); cc12(P ); cs12(P ); sc12(P ); ss12(P ); � � � ;
ccDD(P ); csDD(P ); scDD(P ); ssDD(P ) ); where

ccij = �
HX
k=1

HX
h=1

kpk � phk ( cos(
2�i(k � 1)

H
) cos(

2�j(h� 1)

H
) + � ) ;

csij = �
HX
k=1

HX
h=1

kpk � phk ( cos(
2�i(k � 1)

H
) sin(

2�j(h� 1)

H
) + � ) ;

scij = �
HX
k=1

HX
h=1

kpk � phk ( sin(
2�i(k � 1)

H
) cos(

2�j(h� 1)

H
) + � ) ;

ssij = �
HX
k=1

HX
h=1

kpk � phk ( sin(
2�i(k � 1)

H
) sin(

2�j(h� 1)

H
) + � ) :

It is not di�cult to see that similar properties as Theorem 1 hold for all vectors except

HASH(X). However, we have not yet proved a similar property for HASH(X).

3.3 Substructure Search Using Hash Vectors

Using hs(P ), a substructure search can be done quickly in the following way. We assume that

the length m of the fragment P is at least H. Moreover, we assume that hs(Q
j
i;i+H�1)'s are

already stored along with all protein structures Qj in a database. Although it takes O(Hn)

time to compute the hash vectors for each Qj, the time can be ignored since the hash vectors

for Qj must be computed only when Qj is stored in a database. The memory space required

to store the hash vectors for each Qj is O(n).

To test whether or not there is a fragment Q
j
i;i+m�1 of Qj such that d(P;Q

j
i;i+m�1) � �

holds, we use the following procedure.

STEP 1: For all i � jQj j � m + 1, test whether or not condition COND(P1;H ; Q
j
i;i+H�1

; )

holds.

STEP 2: For all i satisfying the above condition, test whether or not d(P;Qj
i;i+m�1) � � holds.

Here, we consider the computation time for the above procedure. It is expected that only

STEP 1 is executed for most i. Thus, the time for a protein structure Qj is expected to be

O(n) in most cases. Thus, the time for N protein structures in a database is expected to be

O(Nn) in most cases.

Next, we consider the parameter . From Theorem 1,  = H�(1 + �)� should be used (in

the case of m = H). However, experimental results show that it does not fail to �nd similar

fragments even if a much smaller value is used. It is obvious that the search time is reduced if

a smaller  is used. Thus, the value for  should be determined based on experimental results.



4 Experimental Results

Experiments have been done using PDB data [3]. Although PDB data contain various kinds

of information, only positions of C� atoms are used. All algorithms are implemented in the C

language on a SUN SPARC STATION-10 (a UNIX workstation).

New hashing methods are compared with the previous and the naive ones in Table 1. NV

denotes the naive method described in Subsection 2.2. LS denotes the least-squares hashing

method [1]. Both A and A' denote HASH(A), where D = 4 is used in A and D = 8 is used in

A'. B, A+B and A+B+B' denote HASH(B), HASH(A+B) and HASH(A+B+B'), respectively,

where D = 4 and L = H
4
is used in each case. X denotes HASH(X), where D = 3 is used.

Each item in DATA denotes a �lename (denoting a protein structure) of PDB data, where

chain A is used in the case of 4HHB. Each pair of numbers in parentheses denotes the range of

positions of a fragment P . Each item in NUM denotes the number of protein structures Qj 's

each of which contains a fragment Q
j
i;i+m�1 such that d(P;Q

j
i;i+m�1) � �. For each algorithm

and each pattern fragment, search time (CPU time (sec)) amongst all structures in a database

is shown, where 811 structures are used and all structural data are stored in main memory of

the workstation. A percentage of indices for which STEP 2 is executed is described too. In each

algorithm except HASH(X), preprocessing (i.e., computation of hash vectors) for all structures

was completed in a few minutes, so that it can be neglected. In HASH(X), it took more than

an hour. However, it may be allowed since preprocessing must be done only once.

Table 1: Comparison of the new hashing methods.

DATA NUM NV LS A A' B A+B A+B X

+B'

4HHB(A) 57 63.0 12.1 4.9 5.2 4.0 2.5 1.5 4.2

(50-94) 12.6 % 6.7 % 6.6 % 5.0 % 3.0 % 1.3 % 5.2 %

7LZM 86 64.0 23.7 8.8 9.4 5.1 2.3 1.3 4.7

(35-80) 25.5 % 12.7 % 12.5 % 6.5 % 2.5 % 0.9 % 5.9 %

1R69 6 67.5 24.8 6.7 7.2 8.6 3.8 1.5 4.7

(5-55) 25.5 % 9.1 % 9.0 % 11.2 % 4.5 % 1.1 % 5.8 %

3ADK 5 70.9 5.1 6.8 7.2 4.9 3.4 1.8 4.7

(115-170) 4.4 % 8.7 % 8.7 % 5.7 % 3.8 % 1.6 % 5.5 %

8LDH 10 63.2 8.1 1.2 1.2 1.1 0.6 0.5 1.5

(150-194) 8.0 % 1.2 % 1.1 % 0.7 % 0.3 % 0.1 % 1.5 %

The following parameters were used: H = 40, � = 20:0, � = 0:5, � = 4:0(�A) and  = 1200:0,

where � = 1:0 was used in HASH(X). In general, it is expected that search time is reduced if a

larger value of D is used. However, comparison of A and A' shows that search time increases

although a larger D is used, because the time for comparing hash vectors increases, while the

percentage of indices for which STEP 2 is executed is reduced at most 0:2%. Thus, D = 4 is

used. Although  � H�(1 + �)� was used, each method except LS could �nd all structures

each of which contained a fragment Q
j
i;i+m�1 such that d(P;Q

j
i;i+m�1) � �. LS failed to �nd

3 structures in the case of 3ADK. Moreover, LS took longer than the other hashing methods

in most cases. Thus, it is proved that new hashing methods are much more useful than the

least-squares hashing method.



From Table 1, it is seen that the following relation holds approximately:

A+B+B' � A+B � X � A � A' � B � LS � NV ;

where x � y denotes that x is faster than y, and x � y denotes that x is as fast as y. Thus,

it can be said that we had better combine di�erent types of hash vectors. This result seems

natural from the following reason. In general, the position of a point in 3D can be determined

uniquely except mirror image if the lengths from three �xed points are speci�ed. Such vectors as

HASH(A), HASH(B) and HASH(B') contain information about lengths from one point, while

HASH(A+B) contains information from two points, and HASH(A+B+B') contains information

from three points. Thus, combining di�erent types of vectors, we can get more information

about an outline shape of protein structure.

In each of the new hashing methods, it can be seen that search time was reduced considerably

compared with the naive method. Especially, it is seen that HASH(A+B+B') is 30 � 100 times

faster than the naive method. Thus, it is proved that the new hashing methods, especially

HASH(A+B+B'), are very e�ective.

5 Conclusion

In this paper, we have described new hashing methods for quick substructure searching. The

experimental results show that the methods are very fast and e�ective.

Although the proposed methods work very well for small fragments (jP j < 50 � 100), they

do not work well for large structures because they are not robust for insertions or deletions of

sequences. Thus, an e�cient hashing method, which is robust for insertions and deletions of

sequences, should be developed.
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