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Abstract

Protein structure analysis from DNA sequences is an important and fast growing area

in both computer science and biochemistry. Although interesting approaches have been

studied, it is very di�cult to capture the characteristics of protein, since even a sim-

ple protein have a complex combinatorial structure, which makes biochemical experiments

very di�cult to detect functional components. For this reason, almost all the problems

about this �eld are left unsolved and it is very important to develop a system which assists

researchers on molecular biology to remove the di�culties by a combinatorial explosion.

In this paper, we propose a system based on combination of a probabilistic rule induc-

tion method with domain knowledge, which we call MOLA-MOLA (Molecular biological

data-analyzer and Molecular biological knowledge acquisition tool) in order to retrieve the

hassles from the experimental environments of molecular biologists. We apply this method

to comparative analysis of lysozyme and �-lactalbumin, and the results show that we get

some interesting results from amino-acid sequences, which has not been reported before.

1 Introduction

Protein structure analysis from DNA sequences is an important and fast growing area in both

computer science and biochemistry. Although interesting approaches have been studied, it is
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very di�cult to capture the characteristics of protein, since even simple proteins have complex

combinatorial structure. There are 20 amino acids, and even small proteins have about 100

amino-acid sequences, so the search space is almost equal to 20100 ' 2400. Actually, molecular

biologists are now facing with many problems about experiments caused by combinatorial

explosions. For example, even now we cannot exactly determine relations between a sequence

and a function only by using physical�chemical knowledge about amino acids, so we have
to search for some sequences which is similar to the target sequence and has been already

well studied. For this purpose, we apply homological search methods, but what makes the

problems di�cult is that similar sequences do not always guarantee similarities about functions.

Therefore we have to perform many experiments in order to detect the relations by trial and
errors. These experiments needs technique of recombinant DNA, but we should focus on the

place to substitute normal DNA sequences by non-normal ones because of huge search spaces:

the selection of location for substitution may cause combinatorial explosion. Moreover, the
selection of non-normal sequences may also generate another type of combinatorial explosion.

For this reason, almost all the problems about this �eld are left unsolved because of those

intractable nature, and it is very important to develop a system which assists researchers on

molecular biology to remove the di�culties caused by combinatorial explosion [4].

In this paper, we propose an approach to retrieve the hassles from the experimental en-
vironments of molecular biologists. For this purpose, we introduce a rule induction method

based on rough sets, which we call PRIMEROSE [10]. However, as shown below, the original
PRIMEROSE is too powerless for our purpose. Therefore we also introduce representational
hierarchy and hypothesis hierarchy in order to augment our induction methods. Furthermore,
we introduce a mechanism which controls the application of domain knowledge to hierarchical

representations and which generates hypothesis hierarchy. We apply this method to compara-
tive analysis of lysozyme and �-lactalbumin, and the results show that we get some interesting
results from amino-acid sequences, which has not been reported before. Based on these new

discovered knowledge, we are now planning some experiments of biochemistry in order to val-

idate our results. Experiments will be started this September, and evaluation of our induced
results will be reported when the whole experiments will have been completed.

The paper is organized as follows: in Section 2, we give a brief description about our domain:
comparative analysis of lysozyme IIc and �-lactalbumin. In Section 3, we brie
y discuss about

our rule induction method, which we call PRIMEROSE(Probabilistic Rule Induction Method

based on Rough Sets). Section 4 gives discussion on problems on application of empirical

learning methods to sequential analysis, and how to use domain knowledge, and Section 5

presents the discovery strategy of MOLA-MOLA and how it works. Finally, in Section 6, we

show the results of application of this system to comparative analysis of lysozyme IIc and

�-lactalbumin.

2 Lysozyme and �-lactalbumin

Lysozyme IIc is a enzyme which dissolves necrotic tissue in a body space of living things, such

as nose. Simply speaking, it transforms dirty trashes di�cult to remove into ones easy to clean.
All living things have this kind of enzyme, and especially, in the category of vertebrate animals,

such as �shes, birds, monkeys, the sequences are almost preserved. That is, this lysozyme IIc



evolves very slowly in terms of molecular evolution. This suggests that almost all the sequences

are very important to maintain its function, according to the theories of molecular evolution.

On the other hand, �-lactalbumin, functions as a co-enzyme of one reaction which dissolves

the chemicals in milk into those easy for babies to take nutrition. So this enzyme only exists

in mammals, such as monkeys.

This comparative analysis is one of the most interesting subjects in molecular biology be-
cause of the following three reasons. First, �-lactalbumin are thought to be originated from

lysozyme IIc, since both of the sequences are very similar. According to the results of homo-

logical search, about 60 % of the sequences of �-lactalbumin matches with those of lysozyme.

In this methodology, even 25 % match is excellent, so the above results suggest that they have
the same origin. In addition to this similarity, the global structure of these two proteins are

the same, like a soccer ball (called globular protein). Second, although the active site of

lysozyme, which is de�ned as the place to determine the function of an enzyme, has been al-
ready determined exactly, it has been shown that this site is not only the factor to preserve

its function. For example, even if we substitute a few amino acids of �-lactalbumin, which are

located at the place corresponding to the active site of lysozyme, by the amino acids speci�c

to lysozyme, we cannot get a lactalbumin product which has the same function as lysozyme.

It suggests that some complex interactions between amino acids are indispensable to achieving
those functions. Third, the active site of �-lactalbumin has not been found, and it is unknown

what parts of the sequences of amino acids are important for function.
Therefore, in this paper, we analyze the sequences of both proteins to discover the cause of

the di�erence in functions of these two proteins via computational methods.

3 Rule Induction Method based on Rough Sets

Rough set theory is developed and rigorously formulated by Pawlak[8]. This theory can be

used to acquire certain sets of attributes which would contribute to class classi�cation and can

also evaluate how precisely these attributes are able to classify data.
For example, let C denote a set whose elements belong to a certain class c and be equal to

f1,2,3,4,5g. Then if we have a set f1,2,3g which satis�es an equivalence relation R1, then we

say that R1 class�es c correctly. Because the relation between f1,2,3g and C corresponds to a
proposition, R1 ! c. We describe these relations in terms of rough set theory as follows:

R1 ! c iff [x]R1
� C;

where [x]R1
denotes a set which satis�es an equivalence relation R1.

In the same way, it is possible to formulate partial classi�cation. For example, if we have a

set f1,3,4,5,7g which satis�es an equivalence relation R2 and which include a element(e.g.,7),

which does not belong to the class c. However, we have common elements between [x]R2
and

C, so we say that R2 class�es c partially. We can describe this relation in terms of variable
precision rough set theory, which is the extension of originial rough set theory [11], as follows:

R2

�
! c iff [x]R2

\
C 6= � and � = 1�

card [x]R2
\ C

card [x]R2

;

where � denotes the misclass�cation rate of R2. So, this means that if a case satis�es R2, then

this case belong to c with the accuracy 1� �.



In this way, we can develop rule induction(class�cation) method based on a set-theoretic

apporoach, which is one of the most important features of rough set theory. Readers, who would

like to know other interesting characteristics of rough sets. could refer to [8].

The above two class�cation shows two important characteristics of clas�cation: the former is

deterministic, and the latter is probabilistic. While the former proposition is desirable because

of its certainity, we sometimes have to deal with partial class�cation because of the probabilistic
nature of a molecular biological domain.

So we use the latter extended de�nition of the proposition. Furthermore, in order to estimate

induced rules, we introduce two statistical measures. Our de�nition of probabilistc rules is

shown as follows:

De�nition 1 (De�nition of Probabilistic Rules) Let Ri be an equivalence relation and D

denotes a set whose elements belong to a class d and which is the subset of U. A probabilistic

rule of D is de�ned as a tuple, < Ri
�
! d; SI(Ri; D); CI(Ri; D) > where Ri

�
! d satis�es the

following proposition:

Ri
�
! d iff [x]Ri

\
D 6= � and � = 1� SI(Ri; D);

and where SI and CI are de�ned as:

SI(Ri,D) =
card ([x]Ri

T
D)

card [x]Ri

; and CI(Ri,D) =
card ([x]Ri

T
D)

card D
:

2

SI corresponds to the accuracy measure de�ned by Pawlak [8]. For example, if SI of a rule

is equal to 0.9, then the accuracy is also equal to 0.9. On the other hand, CI is a statistical

measure of how proportion of D is covered by a rule. For example, if CI is equal to 0.5, then half
of the elements of a class belongs to the set whose elements satisfy that equivalence relation.

We developed a system, which we call PRIMEROSE ( Probabilistic Rule Induction Method
based on Rough Sets ), which induces the above type of probabilistic rules from databases [10].

While PRIMEROSE is useful to rule induction in probabilisitc domains, it is powerless to apply
to sequential analysis in molecular biology as shown in the next section. Therefore we introduce

meta-system which control strategy of PRIMEROSE as shown in section 5 and 6.

4 How to Use Domain Knowledge

4.1 Problems of Empirical Learning Methods

It is easy to see that simple application of machine learning methods to DNA or amino-acid

sequences without using domain-speci�c knowledge cannot induce enough knowledge.
For our example, AQ-15 (set to save 100 rules) [7] and PRIMEROSE [10] can generate

more than 100 rules for classi�cation. It is because there are too many attributes, although the
number of target classes is only two, and because many attributes have the same classi�cation

power. Furthermore, these rules consist of only one [attribute�value] pair and only show what
amino acid can be used for classi�cation. So, from those "fragmental" rules, we have to extract



more structural knowledge. However, these two methods is useful in the sense that they can

induce the whole rules from DNA or amino-acid sequences, if we do not use some domain-

speci�c criterion or if there are many optimal attributes under such criterion. On the contrary,

in this situation, simple application of induction of decision tree [1, 9] gives us some di�culties.

Many attributes( exactly, 52 attributes) have the maximum value of information gain. So we

have to choose one of such attributes. If simplicity is preferred, that is, if the number of leaves
should be minimized, then location 44 will be selected as shown below.

(
location44 = N � � � lysozyme � � � (45cases)

location44 = V � � ��� lactalbumin � � � (23cases)

In this case, we get a simple tree, which consists of one node and two leaves. This result is much

more useless than those of AQ and PRIMEROSE, since our objective is not to �nd a simple

rule for classi�cation. Readers may say that these di�culties will be solved by transforming this

simple representation into suitable one. However, in general, choosing suitable representation

needs well-de�ned domain-speci�c knowledge. As mentioned above, we will face with di�culties

caused by combinatorial explosion without domain knowledge. However, if we use domain

knowledge strictly, then much interesting information which could be sources of discoveries will
be eliminated, and only some evident knowledge will be acquired. So, we cannot fully avoid
generating all of the rules which are consistent with training samples.

Hence it is very crucial to control application of domain knowledge, according to what

problem we want to solve. If we need only some knowledge, we should strictly apply domain
knowledge, and focus only on some attributes of training samples. These cognitive aspects
of machine discovery system is discussed by researchers on machine discovery [12]. Here we

assume that the cognitive strategy of molecular biologists is mainly modeled by the following

process: �rst, they make all the possible solutions without domain knowledge, second, they
apply domain knowledge and interpret these solutions. Then they change representation by
applying domain knowledge, and repeat the above �rst and second procedures, based on this

representation.

4.2 Representational Hierarchy

The one is hierarchy of [attribute�value] pair representation, which is based on general domain

knowledge of molecular biology.

Molecular biologists use representational hierarchy to describe protein structure, and this

hierarchy consists of the following four level. First is called a DNA-sequence level, which
corresponds to DNA sequences of a protein. Sequences are described by [location�the kind of

DNA] pairs as shown in �g.2. Second is called a primary-structure level, on which amino-

acid sequences are represented by combination of [location�the name of amino acid]. Those
amino-acid sequences are determined by codon triplets. Third is called a secondary-structure
level. This level is represented by the sequence of speci�c 3-D structure, such as �-helix, �-

sheet. These speci�c 3-D structure are integrated into 3-D structure of proteins, which is the

fourth level, called tertiary-structure level.

This hierarchy is based on representational issues. There are very useful, since on each
level we can use di�erent kind of physical-chemistry knowledge. For example, in the primary-

structure level, since chemical characteristics of amino acids classify amino acids into some



categories: since Asparatic acid (D) and Glutamic acid (E) are acidic, so they are included in a

set of "acidic" amino acids. Therefore these knowledge is available for comparison of amino-acid

sequences.

4.3 Hypothesis Hierarchy

We introduce two axis to represent hierarchy of hypothesis. The �rst axis is based on rep-
resentational hierarchy, which is mentioned in the above subsection. Applying PRIMEROSE

methods to each sequence of representation, we can induce rules for each hierarchical level. On

the other hand, the second axis is based on the level of constraints. As discussed in Section

3, controlling usage of domain knowledge is very important to get suitable hypothesis. And
this axis supports that control, which is discussed in the next section. Here, we set four levels

of usage of constraints. The �rst level is no application of domain-speci�c knowledge. In this

level, only syntactical knowledge is induced, so most of those knowledge is meaningless in terms
of semantics of biological domains. The second level is usage of primary-type of domain knowl-

edge. Primary-type means knowledge about each unit, and in this level, interactions between

units are not considered. The third level is application of second-type of domain knowledge.

Second-type means knowledge about interactions between each unit and its neighbors. So,
only local interactions between units are considered. In this domain, we de�ne the boundary
of neighborhood as 3. For example, location 54 are included in an neighborhood of location 51,

but location 55 is not in this neighborhood. Readers may say that this de�nition of boundary
is a little weak, but it is based on heuristics of molecular biologists. The fourth level is con-
sideration of third-type of domain knowledge. At this level, knowledge about remote e�ect are
included in the constraints.

5 Discovery Strategy of MOLA-MOLA

In order to discover the functional components of two enzymes, lysozyme IIc and �-lactalbumin,

we developed a system MOLA-MOLA ( MOLecular biology data-Analyzer and MoLecular

biology knowledge Acquisition Tool ), which supports not only our problems, but also other
problems on protein structure analysis, such as detection of the active site.

Discovery Strategy of MOLA-MOLA is shown in Fig. 1. As shown in the above section, this

strategy is based on a cognitive model of molecular biologists. First, we apply PRIMEROSE to
primary structure of proteins, and induce rules from the sequences without domain knowledge.

And then we use domain knowledge to acquire as much knowledge as possible from primary
sequences. Second, we estimate secondary structures from primary ones, and transform pri-

mary sequences into secondary sequences. Then we repeat the above subprocedures: we apply

PRIMEROSE without domain knowledge, and then we induce knowledge with domain knowl-
edge. Third, we again estimate tertiary structure from secondary ones, and repeat the above

subprocedures again.

Primary-Structure-Level

From amino-acid sequences, �rst, we calculate various kinds of statistical measures, such as the
composition of amino-acids of two proteins. These are now used for molecular biologists, which



Primary-Structure-Level : 1-h-level ! 2-h-level ! 3-h-level ! 4-h-level

#

Transformation

#

Secondary-Structure-Level : 1-h-level ! 2-h-level ! 3-h-level ! 4-h-level

#

Transformation

#

Tertiary-Structure-Level : 1-h-level ! 2-h-level ! 3-h-level ! 4-h-level

1-h(ypothesis)-level: without domain knowledge

2-h(ypothesis)-level: with knowledge about similarities

3-h(ypothesis)-level: with knowledge about interactions
4-h(ypothesis)-level: with knowledge about remote e�ect

Figure 1: Discovery Strategy of MOLA-MOLA

we are now planning to use those measures to derive global information on these sequences.
Second, we apply PRIMEROSE to amino-acid sequences without domain-knowledge. Induced

rules are composed of proposition and two statistical measures (SI and CI), as shown in the
appendix B. Those Rules are �rst ordered by the value of CI, and then those which have the
same value of CI are ordered by the value of SI. They always include trivial solutions, since
similarities between amino acids are not considered (1-hypothesis-level). Then we apply

primary constraints, such as similarities of amino acids, to these results, and removes trivial
ones. These solutions are in the 2-hypothesis-level. For the above example, PRIMEROSE
induces more than hundred rules from the databases of lysozyme and �-lactalbumin. Rules

which satisfy SI=1.0 and CI=1.0 are shown in Table 1. These rules are not trivial, however,

rules that CI is less than 1.0 have many trivial solutions. For instance, SI and CI of the rule:
"[84=L] ! Lysozyme" are equal to 0.95 and 0.89 respectively, and those of the rule: "[84=F]

! �-lactalbumin" are equal to 1.0 and 0.86 respectively. These values are very high, but since

L and F share the similar characteristics, they will be removed from the 2-hypothesis level.
Next, we apply secondary constraints, which includes some knowledge on interaction between

neighbors, and generates 3-hypothesis-level. This procedures is started from rules which

have the high values of SI. For example, in the case of the following rules: "[92=A] _ [92=V]!

Lysozyme" (SI=1.0, CI=0.89) and "[92=D] ! �-lactalbumin" (SI=1.0, CI=0.95), the analysis

is started from this address, and the following rule is obtained:

[86 = D]&[87 = D]&[88 = D]&[89 = L]&[90 = T ]&[91 = D]&[92 = D]&[93 = I]&[94 = M ] !
�� lactalbumin (SI=1.0, CI=0.89), and

[86 = S]&[87 = D]&[88 = I]&[89 = I]&[90 = A]&[91 = K]&[92 = A]&[93 = V ]&[94 = A] !

lysozyme (SI=1.0, CI=0.62).

Finally, we apply tertiary constraints, which contains knowledge on remote e�ects, and which
restricts our focus of attention. Then 4-hypothesis-level are obtained. For example, in the

case of the above two rules, the former is acidic and the latter is hydrophobic as to the a�nity



to water. So the latter region tends to escape from contacting with water.

We store induced results at these four levels, because the assumptions of higher levels may

be wrong. If so, we have to proceed the analysis at the lower level.

Secondary-Structure-level

Next, we are going up to a higher representational level. First, we change representation of

attributes by applying the Chou-Fasman method [2] to primary amino-acid sequences. Then,

we obtain prediction of secondary structure for each amino-acid sequence. For example, the

4th to 10th amino acids form �-helix. Based on the above results, we replace the value of each

attribute, which is the address of a primary sequence, by the above knowledge on secondary
structure. For the above example, we replace the values of the 4 th to 10th attributes by

�-helix, �-helix, �-helix, �-helix, �-helix, and �-helix. That is,

primary-structure-level E R C E L A

# # # # # # #

secondary-structure-level � � � � � �

Some attributes have no speci�c secondary structure. In this case, we replace the value of these
attributes by one of the four characteristics: f hydrophobic, polar, acidic, basic g, since they

play an important role in making secondary structure.

Then, we apply PRIMEROSE and hypothesis-hierarchy again to these transformed se-
quences. We obtain rules at each hypothesis level.

For our problem, the induced results at the 1-hypothesis-level are shown in Table 2. Then,
we consider the similarities between these sequences. For example, �-helix and hydrophobic

region are similar, since these regions are rich in hydrophobic amino acids. So, their behavior
is almost the same, except for compactness in 3-D space: �-helix is more compact than general

hydrophobic region. Therefore rules about location 107-110 are removed from knowledge in
the 2-hypothesis-level. Next, we consider interaction between these regions. While location

83-94, 98-104, 107-110, and 113-117 of lysozyme form a speci�c complex structure, those of
�-lactalbumin make a hydrophobic structure. So these two regions are expected to be very

di�erent in tertiary structure. Finally, we consider remote e�ects of the above region, and then
interpret the characteristics of this part. These results of 3-hypothesis and 4-hypothesis level

is summarized in Table 3.

Tertiary-Structure-level

In the same way, we can go up to a higher level: �rst, sequences at the lower level are pro-
cessed, and the knowledge needed for analysis at this level are obtained. Second, we change

representation of attributes according to those derived results. Third, we apply PRIMEROSE

to the new table, and PRIMEROSE induced some rules. In this stage, since we use hypothesis
hierarchy, hierarchical hypotheses are calculated.

Unfortunately, we have no accurate procedure that determines tertiary structure from sec-
ondary structure, and we only know tertiary structures of proteins which can be crystallized.

Hence, in the present version, PRIMEROSE do not have procedures at this level.



Table 1: Results of Primary Structure Level and 1-Hypothesis-Level
Protein Amino Acid and its Location

lysozyme c N 27 (A,L 31) K 33 E 35 N 44 (Y,D 53)

�-lactalbumin E 27 T 31 F 33 (I,S,T 35) V 44 E 53

lysozyme c (C,A,G 76) (A,R 107) (G,D,Q 117) L 129

�-lactalbumin I 76 D 107 S 117 E 129

Table 2: Results of Secondary Structure Level and 1-Hypothesis-Level

Protein Location

70-77 83-94 98-104 107-110 113-117

lysozyme c hydrophobic hydrophobic loop �-helix basic
�-lactalbumin polar acidic �-helix hydrophobic hydrophobic

However, for our problem, tertiary structures of lysozyme and �-lactalbumin have already

been analyzed. So these knowledge are given as problem-speci�c knowledge, and we do not
have to execute this process.

6 Induced Results and Evaluation of our system

Third, Table 3 shows the result of secondary-structure-level and 3,4-hypothesis level. So,
this result suggests that the higher location play an important role in the function of lysozyme.

We applied MOLA-MOLA to 23 sequences of �-lactalbumin and 45 sequences of lysozyme

from PIR databases, both of which are used as training samples. And as inputs of MOLA-
MOLA, we use the sequences as inputs which are processed by multiple alignment procedures
and in which gaps are inserted.

The induced results are shown in the following four tables. First, Table 1 shows the output

of the �rst procedure, whose induced rules satis�es SI=1.0 and CI=1.0. From the second
to sixth columns, alphabets denote amino-acids, and the numbers denote the location in the

sequence of a protein. For example, N 27 means that the 27th amino acid of lysozyme IIc is N,

or aspargine. These results mean that these amino acids are speci�c to each proteins. That is,

the most characteristic regions are expected to be included. Actually, it is known that E 35,

and Y or D 53 are the active site of lysozyme, and also K 33, N 44 and A or R 107 are said
to play an important role in its function. However, N 27 and L 129 are new discovery results,

and no observations or experimental results are reported. These acids may contribute to the
function of lysozyme.

Second, Table 2 shows the output of the second procedure. The second row shows the loca-

tion in sequences, for example, 70-77 means 70th to 77th amino acid in sequences of lysozyme

c. Interestingly, while speci�c amino acids are mainly located at the lower address part (called

it N-terminal), speci�c local structure are mainly located at the higher address part (called



Table 3: Results of Secondary Structure Level and 3, 4-Hypothesis-Level

Protein Location

83-94 & 98-104 & 107-110 & 113-117

lysozyme c a complex folding structure including one loop

�-lactalbumin a simple hydrophobic region with a acidic region

Table 4: Statistics of Sequential Analysis

Hydrophobicity
Estimated Exon Match Rules lysozyme �-lactalbumin

1- 22(22) 11(50.0%) 3 6 4

23- 77(55) 25(45.4%) 12 19 18

78-104(27) 7(25.9%) 4 14 9
105- (26) 1(3.8%) 8 9 10

it C-terminal). The most signi�cant regions are 98-104 and 113-117, since each secondary

structure is very di�erent. Other regions also show that hydrophobic regions of lysozyme cor-
respond to non-hydrophobic regions of �-lactalbumin, and vice versa. So these regions may

play an important role in realizing each function. Fourth, the statistics of each estimated exon
structure are shown in Table 4. Intuitively, exon denotes semi-global structure of a protein.

This semi-global structure is said to be related with functional domain of a protein and with

acquiring new function by evolution technique "exon shu�ing" [5].
These statistics also support the above three tables. In the second column, the number of

match of amino acids between lysozyme and �-lactalbumin are given. From this table, it is

notable that third and fourth exon are very di�erent, compared with �rst and second exon.
The third column presents induced rules which satis�es SI=1.0 and CI > 0.5, supporting the
result of the second column. The fourth and the �fth column show the averaged number of
hydrophobic amino acids, and the third exon of lysozyme is di�erent from that of �-lactalbumin.

Hence these statistics suggest that the third and the fourth exon should be contributed to the

functional di�erence between these two proteins.
We are now planning to validate these results by the experiments based on technique of

recombinant DNA. Since it takes about one to three weeks to study the characteristics of one

"mutant" protein, we need more that 6 months to con�rm our induced results. Readers may

say that it takes too much long time for validation, but it is said that we need 10 to 20 years to

study the characteristics of the two proteins. Therefore we can save our time to make e�cient
experiments.
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